20.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,點(diǎn)D是AB的中點(diǎn).求證:
(1)AC1∥平面B1CD;
(2)AC⊥BC1

分析 (1)設(shè)BC1與B1C的交點(diǎn)為O,連結(jié)OD,推導(dǎo)出OD∥AC1,由此能證明AC1∥平面B1CD.
(2)由CC1⊥平面ABC,得CC1⊥AC,又AC⊥BC,由此能證明AC⊥BC1

解答 證明:(1)設(shè)BC1與B1C的交點(diǎn)為O,連結(jié)OD,
BCC1B1為平行四邊形,所以O(shè)為B1C中點(diǎn),又D是AB的中點(diǎn),
所以O(shè)D是△ABC1的中位線,OD∥AC1,
又因?yàn)锳C1?平面B1CD,OD?平面B1CD,
所以AC1∥平面B1CD.
(2)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
所以CC1⊥AC,又AC⊥BC,BC∩CC1=C,
所以AC⊥平面BCC1B1,
所以AC⊥BC1

點(diǎn)評(píng) 本題考查線面平行、線線垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3-mx2+$\frac{3}{2}$mx(m>0)
(1)當(dāng)m=2時(shí),求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)既有極大值,又有極小值,且當(dāng)0≤x≤4m時(shí),f(x)<mx2+($\frac{3}{2}$m-3m2)x+$\frac{32}{3}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線y2=4px上的點(diǎn)到直線x+y+3=0的最短距離為$\sqrt{2}$.
(Ⅰ)求拋物線的方程;
(Ⅱ)F為拋物線的焦點(diǎn),直線l1,l2都過(guò)F點(diǎn),且l1⊥l2,l1交拋物線于A,B兩點(diǎn),l2交拋物線于C,D兩點(diǎn),求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在等差數(shù)列{an}中,其前n項(xiàng)和為Sn,S2=9,S4=22,則S8=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=$\overrightarrow a$•($\overrightarrow b$+$\overrightarrow c$)-2,其中向量$\overrightarrow a$=(sinx,-cosx),$\overrightarrow b$=(sinx,-3cosx),$\overrightarrow c$=(-cosx,sinx),x∈R,
(1)求函數(shù)f(x)的最小正周期及最大值;
(2)將函數(shù)y=f(x)的圖象通過(guò)怎樣的變換得到y(tǒng)=cosx的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=$\sqrt{{x^2}-9}$的定義域?yàn)榧螦,集合B={x|x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知拋物線C:y2=2px(p>0),其焦點(diǎn)為F(1,0),過(guò)F作斜率為k的直線交拋物線C于A、B兩點(diǎn),交其準(zhǔn)線于P點(diǎn).
(Ⅰ)求P的值;
(Ⅱ)設(shè)|PA|+|PB|=λ|PA|•|PB|•|PF|,若k∈[$\frac{1}{4}$,1],求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.異面直線a,b成60°,直線c⊥a,則直線b與c所成的角的范圍為[30°,90°].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果P1,P2,…,Pn是拋物線C:y2=8x上的點(diǎn),它們的橫坐標(biāo)依次為x1,x2,…,xn,F(xiàn)是拋物線C的焦點(diǎn),若x1+x2+…+xn=8,則|P1F|+|P2F|+…+|PnF|=(  )
A.n+10B.n+8C.2n+10D.2n+8

查看答案和解析>>

同步練習(xí)冊(cè)答案