17.若$\frac{5π}{2}$<θ<3π,則3${\;}^{tanθlo{g}_{3}2}$+$\sqrt{{4}^{tanθ}-{2}^{(tanθ+1)}+1}$的值為1.

分析 根據(jù)θ的取值范圍,利用指數(shù)、對數(shù)函數(shù)的運算性質進行化簡求值即可.

解答 解:$\frac{5π}{2}$<θ<3π,
∴tanθ<0,
∴0<2tanθ<1,
∴3${\;}^{tanθlo{g}_{3}2}$+$\sqrt{{4}^{tanθ}-{2}^{(tanθ+1)}+1}$
=${{(3}^{{log}_{3}2})}^{tanθ}$+|2tanθ-1|
=2tanθ+1-2tanθ
=1.
故答案為:1.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的運算性質與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.解關于x的不等式:(ax2-ax-2>0(a>0且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.(1-x+x2)(x+$\frac{1}{x}$)5的展開式中x3的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=-x1nx的圖象在點(1,f(1))處的切線的傾斜角為(  )
A.-1B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2lnx-ax,g(x)=x2,若函數(shù)f(x)在(2,f(2))處的切線與函數(shù)g(x)在(2,g(2))處的切線互相平行,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=-1(a>0,b>0)的離心率分別為e1,e2,且連接兩條雙曲線頂點所得四邊形的面積為S1,連接兩條雙曲線的焦點所得四邊形的面積為S2,試探究:
(1)e1與e2之間的關系式;
(2)$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,A(-2,0),B(2,0),第一象限內點C滿足∠ACB=60°,且△ABC的面積為$\sqrt{3}$.雙曲線Г以A、B為焦點,經過點C.
(1)求雙曲線的方程;
(2)直線l過點B與雙曲線右支交于M、N兩點,且|AM|、|MN|、|AN|成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的長軸長等于圓C2:x2+y2=4的直徑,且C1的離心率等于$\frac{1}{2}$.直線l1和l2是過點M(1,0)互相垂直的兩條直線,l1交C1于A,B兩點,l2交C2于C,D兩點.
(I)求C1的標準方程;
(Ⅱ)當四邊形ABCD的面積為$\frac{12}{7}\sqrt{14}$時,求直線l1的斜率k(k>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,長軸AB上2016個等分點從左到右依次為點M1,M2,…,M2015,過M1點作斜率為k(k≠0)的直線,交橢圓C于P1,P2兩點,P1點在x軸上方;過M2點作斜率為k(k≠0)的直線,交橢圓C于P3,P4兩點,P3點在x軸上方;以此類推,過M2015點作斜率為k(k≠0)的直線,交橢圓C于P4029,P4030兩點,P4029點在x軸上方,則4030條直線AP1,AP2,…,AP4030的斜率乘積為-2-2015

查看答案和解析>>

同步練習冊答案