12.函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=2x2-x+1,則當(dāng)x>0,f(x)=-2x2-x-1.

分析 由x<0時(shí)f(x)的解析式,結(jié)合函數(shù)的奇偶性求出x>0時(shí)f(x)的解析式.

解答 解:∵f(x)是定義在R上的奇函數(shù),x<0時(shí),f(x)=2x2-x+1,
∴x>0時(shí),-x<0;
∴f(-x)=2(-x)2-(-x)+1=2x2+x+1,
又f(-x)=-f(x),
∴f(x)=-f(-x)=-(2x2+x+1)=-2x2-x-1;
故答案為:-2x2-x-1

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C;
(2)若c=$\sqrt{14}$,且sinC=3sin2A+sin(A-B),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知正四棱臺(tái)高是12cm,兩底面邊長之差為10cm,全面積為512cm2
(1)求上、下底面的邊長.
(2)作出其三視圖(單位長度為0.5厘米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)幾何體的正視圖是長為3、寬為1的矩形,側(cè)視圖是腰長為2的等腰三角形,則該幾何的表面積為12+8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+a沒有交點(diǎn),求a的取值范圍;
(3)若函數(shù)h(x)=4f(x)+${\;}^{\frac{1}{2}}$x+m•2x-1,x∈[0,log23],是否存在實(shí)數(shù)m使得h(x)最小值為0,若存在,求出m的值; 若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=2x-x2,則f(-1)+f(0)+f(3)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用數(shù)學(xué)歸納法證明:f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$(n∈N*)的過程中,從n=k到n=k+1時(shí),f(k+1)比f(k)共增加了2k項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanα=2,求sin2α-sinαcosα+2,$\frac{si{n}^{3}α-cosα}{5sinα+3cosα}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案