分析 (1)若函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù),則f(-x)=f(x),可得k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+a沒(méi)有交點(diǎn),方程log4(4x+1)-x=a無(wú)解,則函數(shù)g(x)=${log}_{4}(1+\frac{1}{{4}^{x}})$的圖象與直線y=a無(wú)交點(diǎn),則a不屬于函數(shù)g(x)值域;
(3)函數(shù)h(x)=4x+m•2x,x∈[0,log23],令t=2x∈[1,3],則y=t2+mt,t∈[1,3],結(jié)合二次函數(shù)的圖象和性質(zhì),分類(lèi)討論,可得m的值.
解答 解:(1)∵函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù),
∴f(-x)=f(x),
即 log4(4-x+1)-kx=log4(4x+1)+kx恒成立.
∴2kx=log4(4-x+1)-log4(4x+1)=${log}_{4}\frac{{4}^{-x}+1}{{4}^{x}+1}$=${log}_{4}{4}^{-x}$=-x,
∴k=-$\frac{1}{2}$ …(3分)
(2)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+a沒(méi)有交點(diǎn),
則方程log4(4x+1)-$\frac{1}{2}$x=$\frac{1}{2}$x+a即方程log4(4x+1)-x=a無(wú)解.
令g(x)=log4(4x+1)-x=${log}_{4}\frac{{4}^{x}+1}{{4}^{x}}$=${log}_{4}(1+\frac{1}{{4}^{x}})$,則函數(shù)g(x)的圖象與直線y=a無(wú)交點(diǎn).…(4分)
∵g(x)在R上是單調(diào)減函數(shù).$1+\frac{1}{{4}^{x}}>1$,
∴g(x)>0.
∴a≤0 …(7分)
(3)由題意函數(shù)h(x)=4f(x)+${\;}^{\frac{1}{2}}$x+m•2x-1=4x+m•2x,x∈[0,log23],
令t=2x∈[1,3],則y=t2+mt,t∈[1,3],…(8分)
∵函數(shù)y=t2+mt的圖象開(kāi)口向上,對(duì)稱軸為直線t=-$\frac{m}{2}$,
故當(dāng)-$\frac{m}{2}$≤1,即m≥-2時(shí),當(dāng)t=1時(shí),函數(shù)取最小值m+1=0,解得:m=-1,
當(dāng)1<-$\frac{m}{2}$<3,即-6<m<-2時(shí),當(dāng)t=-$\frac{m}{2}$時(shí),函數(shù)取最小值$-\frac{{m}^{2}}{4}$=0,解得:m=0(舍去),
當(dāng)-$\frac{m}{2}$≥3,即m≤-6時(shí),當(dāng)t=3時(shí),函數(shù)取最小值9+3m=0,解得:m=-3(舍去),
綜上所述,存在m=-1滿足條件.…(12分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)的值域,函數(shù)的單調(diào)性,二次函數(shù)的圖象和性質(zhì),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,1+2$\sqrt{2}$] | B. | [1-2$\sqrt{2}$,1+2$\sqrt{2}$] | C. | [1-2$\sqrt{2}$,3] | D. | [1-$\sqrt{2}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<λ<1 | B. | λ=0 | C. | λ<0且λ≠-1 | D. | λ≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com