4.(1)若tanα=3tan$\frac{π}{5}$,求$\frac{{cos(α-\frac{3π}{10})}}{{sin(α-\frac{π}{5})}}$的值;
(2)已知sin(α+$\frac{π}{3}}$)+sinα=$\frac{{5\sqrt{3}}}{13}$,求cos(α+$\frac{2π}{3}$)的值.

分析 (1)利用兩角和與差的三角函數(shù)化簡表達(dá)式,代入已知條件化簡求解即可.
(2)利用兩角和與差的三角函數(shù)化簡求解即可.

解答 解:(1)tanα=3tan$\frac{π}{5}$,$\frac{{cos(α-\frac{3π}{10})}}{{sin(α-\frac{π}{5})}}$=$\frac{cosαcos\frac{3π}{10}+sinαsin\frac{3π}{10}}{sinαcos\frac{π}{5}-cosαsin\frac{π}{5}}$=$\frac{cos\frac{3π}{10}+tanαsin\frac{3π}{10}}{tanαcos\frac{π}{5}-sin\frac{π}{5}}$
=$\frac{sin\frac{π}{5}+3tan\frac{π}{5}cos\frac{π}{5}}{3tan\frac{π}{5}cos\frac{π}{5}-sin\frac{π}{5}}$=2
(2)sin(α+$\frac{π}{3}}$)+sinα=$\frac{{5\sqrt{3}}}{13}$,可得:$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα+sinα=$\frac{{5\sqrt{3}}}{13}$,$\frac{\sqrt{3}}{2}$sinα+$\frac{1}{2}$cosα=$\frac{5}{13}$.
cos($\frac{π}{3}-α$)=$\frac{5}{13}$,
∴cos(α+$\frac{2π}{3}$)=cos(π-$\frac{π}{3}+α$)=-cos($\frac{π}{3}-α$)=-$\frac{5}{13}$.

點評 本題考查兩角和與差的三角函數(shù),三角函數(shù)化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.新生兒Apgar評分,即阿氏評分是對新生兒出生后總體狀況的一個評估,主要從呼吸、心率、反射、膚色、肌張力這幾個方面評分,滿10分者為正常新生兒,評分7分以下的新生兒考慮患有輕度窒息,評分在4分以下考慮患有重度窒息,大部分新生兒的評分多在7-10分之間,某市級醫(yī)院婦產(chǎn)科對1月份出生的新生兒隨機抽取了16名,以如表格記錄了他們的評分情況.
 分?jǐn)?shù)段[0,7)[7,8)[8,9)[9,10)
 新生兒數(shù)
(1)現(xiàn)從16名新生兒中隨機抽取3名,求至多有1名評分不低于9分的概率;
(2)以這16名新生兒數(shù)據(jù)來估計本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記X表示抽到評分不低于9分的新生兒數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的離心率e=$\frac{{\sqrt{3}}}{2}$,一個焦點為F(${\sqrt{3}$,0).
(I)求橢圓的方程;
(Ⅱ)設(shè)B是橢圓與y軸負(fù)半軸的交點,過點B作橢圓的兩條弦BM和BN,且BM⊥BN.
(i)直線MN是否過定點,如果是求出該點坐標(biāo),如果不是請說明理由;
(ii)若△BMN是等腰直角三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某校共有1200名高三學(xué)生,若在一次考試中全校高三學(xué)生的數(shù)學(xué)成績X服從正態(tài)分布N(110,σ2)(σ>0),若P(100≤X≤110)=0.35,則該校高三學(xué)生數(shù)學(xué)成績在120分以上的有180人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知對任意實數(shù)x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,則m=( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓的方程為x2+y2-2ax-4ay+$\frac{9{a}^{2}}{2}$=0(a>0).
(1)求證:無論a取任何實數(shù)值,上述圓的圓心在同一直線上;
(2)試證明無論a取任何實數(shù)值,上述圓都有公切線,并求出公切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若△ABC的內(nèi)角A、B、C所對的邊a、b、c滿足(a+b)2-c2=3,且C=60°,則ab的值為( 。
A.$\frac{4}{3}$B.6-3$\sqrt{3}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個焦點為F(2,0),且雙曲線與圓(x-2)2+y2=1相切,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.記<a,b>=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,設(shè)an=<2n+1,3n-9>,則數(shù)列[an}的前30項和為( 。
A.960B.1125C.1170D.1250

查看答案和解析>>

同步練習(xí)冊答案