4.已知(1+2x)n=$\sum_{k=0}^{n}$${C}_{n}^{k}$(2x)k=$\sum_{k=0}^{n}$αkxh(n∈N+),(1+2x)n的展開式中末三項的二項式系數(shù)的和為92,判斷展開式系數(shù)組成的數(shù)列a0、a1,…,an的單調(diào)性,并求其最大項.

分析 利用二項式系數(shù)為Cnr,列出方程求出n值,利用二項展開式的通項公式求出第r+1項,利用展開式中最大的系數(shù)大于它前面的系數(shù)同時大于它后面的系數(shù)求出展開式中系數(shù)最大的項.

解答 解:∵末三項的二項式系數(shù)分別為Cnn-2,Cnn-1,Cnn
∴Cnn-2+Cnn-1+Cnn=92
∴Cn2+Cn1+Cn0=92即n2+n-182=0
∴n=13或n=-14(舍)
∴Tr+1=C13r(2x)r=C13r2rxr
設(shè)第r+1項與第r項的系數(shù)分別為tr+1,tr
令tr+1=C13r2r,tr=C13r-12r-1
∴tr+1≥tr則可解得r≤8
∴當(dāng)r取小于8的自然數(shù)時,都有tr<tr+1當(dāng)13≥r≥9時,tr+1<tr
即展開式系數(shù)組成的數(shù)列a0、a1,…,an的單調(diào)性先單調(diào)遞增,再單調(diào)遞減,
展開式中系數(shù)最大的項為T8=C13727x7

點評 本題考查二項展開式中的系數(shù)最大的項的求法:利用最大的系數(shù)大于它前面的系數(shù)同時大于它后面的系數(shù)來求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法錯誤的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.若命題p:“?x∈R,x2-x-1>0”,則命題p的否定為“?x∈R,x2-x-1≤0”
C.“x=1”是“x2+5x-6=0”的充分不必要條件
D.“a=1”是“直線x-ay=0與直線x+ay=0互為垂直”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若α為銳角且cos($α+\frac{π}{6}$)=$\frac{2}{3}$,則sin($\frac{π}{3}-α$)=( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{\sqrt{5}}{3}$D.-$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.PA⊥矩形ABCD所在的平面,且AB=a,AD=b.問:在BC邊上是否存在一點E,使DE⊥平面PAE?若不存在,說明理由;若存在,求出恰有一點時E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個平放的棱長為4的三棱錐內(nèi)有一小球O(重量忽略不計),現(xiàn)從該三棱錐頂端向內(nèi)注水,小球慢慢上浮,若注入的水的體積是該三棱錐體積的$\frac{7}{8}$時,小球與該三棱錐各側(cè)面均相切(與水面也相切),則球的表面積等于( 。
A.$\frac{7}{6}$πB.$\frac{4}{3}$πC.$\frac{2}{3}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知長為l(l≥1)的線段AB的兩個端點在拋物線y=x2上滑動,則線段AB的中點M到x軸的距離的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在底面為正方形的四棱錐S-ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S-ABCD的外接球的表面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),求sin(θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)20、m2、52構(gòu)成一個等差數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}+{y}^{2}=1$的離心率為( 。
A.$\frac{\sqrt{30}}{6}$B.$\sqrt{7}$C.$\frac{\sqrt{30}}{6}$或$\sqrt{7}$D.$\frac{5}{6}$或7

查看答案和解析>>

同步練習(xí)冊答案