13.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),求sin(θ+$\frac{π}{3}$)的值.

分析 由同角三角函數(shù)基本關(guān)系可得sinθ,代入兩角和的正弦公式計(jì)算可得.

解答 解:∵cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{4}{5}$,
∴sin(θ+$\frac{π}{3}$)=sinθcos$\frac{π}{3}$+cosθsin$\frac{π}{3}$
=$\frac{4}{5}×\frac{1}{2}$+(-$\frac{3}{5}$)×$\frac{\sqrt{3}}{2}$=$\frac{4-3\sqrt{3}}{10}$

點(diǎn)評(píng) 本題考查兩角和與差的正弦函數(shù),涉及同角三角函數(shù)基本關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號(hào)t1234567
人均純收入y2.93.33.64.44.85.25.9
(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知(1+2x)n=$\sum_{k=0}^{n}$${C}_{n}^{k}$(2x)k=$\sum_{k=0}^{n}$αkxh(n∈N+),(1+2x)n的展開式中末三項(xiàng)的二項(xiàng)式系數(shù)的和為92,判斷展開式系數(shù)組成的數(shù)列a0、a1,…,an的單調(diào)性,并求其最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知sinα=$\frac{\sqrt{3}}{2}$,cosβ=$-\frac{1}{3}$,且tanα•tanβ>0,則cos(α-β)的值是( 。
A.-$\frac{1-2\sqrt{6}}{6}$B.-$\frac{1+2\sqrt{6}}{6}$C.$\frac{1+2\sqrt{6}}{6}$D.±$\frac{1+2\sqrt{6}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線x-y+3=0與圓心為(3,4)的圓C相交,截得的弦長(zhǎng)為2$\sqrt{2}$.
(1)求圓C的方程;
(2)設(shè)Q點(diǎn)的坐標(biāo)為(2,3),且動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與|MQ|的比值為常數(shù)k(k>0).若動(dòng)點(diǎn)M的軌跡是一條直線,試確定相應(yīng)的k值,并求出該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.求(x-3y+2z)100展開式的各項(xiàng)系數(shù)之和為( 。
A.0B.1C.-1D.9100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線y=x+b與兩曲線C1:x2+y2-|x|-|y|=0和C2:x2+y2-|x|-|y|=$\frac{1}{2}$僅有兩個(gè)交點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(-2,2)B.(-1-$\sqrt{2}$,1+$\sqrt{2}$)C.(-1-$\sqrt{2}$,-$\sqrt{2}$)∪(-$\sqrt{2}$,1+$\sqrt{2}$)D.(-1-$\sqrt{2}$,-2)∪(2,1+$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OD}$=$\overrightarrowkiswg5v$,$\overrightarrow{OF}$=$\overrightarrow{f}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowtj0xawx$,$\overrightarrow{f}$表示下列向量.
(1)$\overrightarrow{AC}$;
(2)$\overrightarrow{AD}$;
(3)$\overrightarrow{AD}$$-\overrightarrow{AB}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{CF}$;
(5)$\overrightarrow{BF}$-$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=axlnx(a≠0,a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,e)時(shí),不等式$\frac{x-1}{a}$<lnx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案