16.在底面為正方形的四棱錐S-ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S-ABCD的外接球的表面積為( 。
A.B.C.12πD.16π

分析 作出直觀圖,根據(jù)所給條件尋找外接球的球心位置,計(jì)算球的半徑.

解答 解:取底面中心O,BC中點(diǎn)E,連結(jié)SO,SE,OE,則OE=$\frac{1}{2}AB$=1,OA=OB=OC=OD=$\sqrt{2}$,SO⊥平面ABCD,∴SO⊥OE,
∵AD∥BC,∴∠SCB為異面直線AD,SC所成的角,即∠SCB=60°,
∵SB=SC,∴△SBC是等邊三角形,∵BC=AB=2,∴SE=$\sqrt{3}$,∴SO=$\sqrt{S{E}^{2}-O{E}^{2}}$=$\sqrt{2}$.
∴OA=OB=OC=OD=OS,即O為四棱錐S-ABCD的外接球球心.
∴外接球的表面積S=4π×($\sqrt{2}$)2=8π.
故選:B.

點(diǎn)評(píng) 本題考查了球與內(nèi)接多面體的關(guān)系,找出外接球的球心位置是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.雙曲線的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{a}{cosφ}}\\{y=btanφ}\end{array}\right.$中,參數(shù)的幾何意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|1≤x<4},B={x|x-a<0}.
(1)當(dāng)a=3時(shí),求A∩B,A∪B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知(1+2x)n=$\sum_{k=0}^{n}$${C}_{n}^{k}$(2x)k=$\sum_{k=0}^{n}$αkxh(n∈N+),(1+2x)n的展開式中末三項(xiàng)的二項(xiàng)式系數(shù)的和為92,判斷展開式系數(shù)組成的數(shù)列a0、a1,…,an的單調(diào)性,并求其最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.有0、1、2、…、8這9個(gè)數(shù)字.
(1)用這9個(gè)數(shù)字組成四位數(shù),共有多少個(gè)不同的四位數(shù)?
(2)用這9個(gè)數(shù)字組成四位密碼,共有多少個(gè)這樣的密碼?
(3)用這9個(gè)數(shù)字可以組成多少個(gè)無重復(fù)數(shù)字的四位數(shù)?
(4)用這9個(gè)數(shù)字可以組成多少個(gè)無重復(fù)數(shù)字的四位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知sinα=$\frac{\sqrt{3}}{2}$,cosβ=$-\frac{1}{3}$,且tanα•tanβ>0,則cos(α-β)的值是( 。
A.-$\frac{1-2\sqrt{6}}{6}$B.-$\frac{1+2\sqrt{6}}{6}$C.$\frac{1+2\sqrt{6}}{6}$D.±$\frac{1+2\sqrt{6}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線x-y+3=0與圓心為(3,4)的圓C相交,截得的弦長(zhǎng)為2$\sqrt{2}$.
(1)求圓C的方程;
(2)設(shè)Q點(diǎn)的坐標(biāo)為(2,3),且動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與|MQ|的比值為常數(shù)k(k>0).若動(dòng)點(diǎn)M的軌跡是一條直線,試確定相應(yīng)的k值,并求出該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線y=x+b與兩曲線C1:x2+y2-|x|-|y|=0和C2:x2+y2-|x|-|y|=$\frac{1}{2}$僅有兩個(gè)交點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(-2,2)B.(-1-$\sqrt{2}$,1+$\sqrt{2}$)C.(-1-$\sqrt{2}$,-$\sqrt{2}$)∪(-$\sqrt{2}$,1+$\sqrt{2}$)D.(-1-$\sqrt{2}$,-2)∪(2,1+$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為4的正方形ABCD,側(cè)棱PA垂直于底面,且PA=3.
(1)求異面直線PB與CD所成的角的大;(結(jié)果用反三角函數(shù)表示)
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案