14.已知x∈(0,π),且$cos(x-\frac{π}{4})=\frac{1}{3}$,則tanx=( 。
A.$-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$B.$-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$
C.$-\frac{{9+4\sqrt{2}}}{7}$D.$-\frac{{9-4\sqrt{2}}}{7}$

分析 由和差角的公式化簡可得cosx+sinx=$\frac{\sqrt{2}}{3}$,結(jié)合cos2x+sin2x=1和x的范圍可得sinx和cosx的值,可得tanx.

解答 解:∵$cos(x-\frac{π}{4})=\frac{1}{3}$,
∴$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx=$\frac{1}{3}$,
∴cosx+sinx=$\frac{\sqrt{2}}{3}$,
又cos2x+sin2x=1,x∈(0,π),
∴sinx>0,
聯(lián)立解得sinx=$\frac{\sqrt{2}+4}{6}$,cosx=$\frac{\sqrt{2}-4}{6}$,
∴tanx=$\frac{sinx}{cosx}$=$-\frac{{9+4\sqrt{2}}}{7}$.
故選:C.

點評 本題考查同角三角函數(shù)的基本關(guān)系,以及和差角的三角函數(shù)公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列四個命題申是真命題的是①③④(填所有真命題的序號)
①“p∧q為真”是“p∨q為真”的充分不必要條件;
②空間中一個角的兩邊和另一個角的兩邊分別平行,則這兩個角相等;
③在側(cè)棱長為2,底面邊長為3的正三棱錐中,側(cè)棱與底面成30°的角;
④動圓P過定點A(-2,0),且在定圓B:(x-2)2+y2=36的內(nèi)部與其相內(nèi)切,則動圓圓心P的軌跡為一個橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知全集U=R,集合A={x|($\frac{1}{2}$)x≤1,B={x|x2-6x+8≤0},則A∩B為( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lg(x2-x-2)的定義域為集合A,函數(shù)$g(x)={x^{\frac{1}{2}}}$,x∈[0,9]的值域為集合B,
(1)求A∩B;
(2)若C={x|3x<2m-1},且(A∩B)⊆C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,∠C=$\frac{π}{6}$,AC=2$\sqrt{3}$,AB=2,則BC的長是( 。
A.2B.4C.2或4D.4或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知點P是正方形ABCD內(nèi)一點,且PA=1,PB=3,PD=$\sqrt{7}$,求正方形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\sqrt{3}$asinB-bcosA=b.
(1)求A;
(2)若b+c=2,當(dāng)a取最小值時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,已知b=$\frac{2\sqrt{3}}{3}$asinB,且cosB=cosC.則△ABC的形狀為等腰三角形或等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.與如圖所示的圖象相符的函數(shù)是( 。
A.y=sinx-|sinx|B.y=|sinx|+sinxC.y=|sinx|D.y=|sinx|-sinx

查看答案和解析>>

同步練習(xí)冊答案