分析 (1)由對(duì)數(shù)函數(shù)的定義域求出集合A,由函數(shù)$g(x)={x^{\frac{1}{2}}}$,x∈[0,9]的值域求出集合B,則A∩B可求;
(2)由集合C化為$C=\left\{{x|x<\frac{2m-1}{3}}\right\}$且(A∩B)⊆C得到不等式$\frac{2m-1}{3}>3$,求解不等式即可得到實(shí)數(shù)m的取值范圍.
解答 解:(1)已知函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)$g(x)={x^{\frac{1}{2}}}$,x∈[0,9]的值域?yàn)榧螧,
則A={x|x2-x-2>0}={x|x<-1或x>2},B={x|0≤x≤3},
∴A∩B={x|x<-1或x>2}∩{x|0≤x≤3}={x|2<x≤3};
(2)∵$C=\left\{{x|x<\frac{2m-1}{3}}\right\}$且(A∩B)⊆C,
∴$\frac{2m-1}{3}>3$,即m>5.
點(diǎn)評(píng) 本題考查了集合的包含關(guān)系判斷及應(yīng)用,考查了函數(shù)的定義域及值域的求法,考查了交集及其運(yùn)算,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 75.5 | B. | 75.2 | C. | 75.1 | D. | 75.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P1=P2 | B. | P1<P2 | ||
C. | P1>P2 | D. | P1,P2的大小無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$ | B. | $-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$ | ||
C. | $-\frac{{9+4\sqrt{2}}}{7}$ | D. | $-\frac{{9-4\sqrt{2}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | α∥β,l?α,n?β⇒l∥n | B. | l⊥n,l⊥α⇒n∥α | C. | l⊥α,l∥β⇒α⊥β | D. | α⊥β,l?α⇒l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com