分析 (1)由題意和正弦定理可得sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,結(jié)合三角形內(nèi)角的范圍可得角A;
(2)由余弦定理可得a2=4-3bc,再由已知式子和基本不等式可得bc的范圍,可得此時(shí)邊長,可得三角形的面積.
解答 解:(1)∵在△ABC中$\sqrt{3}$asinB-bcosA=b,
∴由正弦定理可得$\sqrt{3}$sinAsinB-sinBcosA=sinB,
由三角形內(nèi)角的范圍可得sinB≠0,
∴約掉sinB可得$\sqrt{3}$sinA-cosA=1,
∴2sin(A-$\frac{π}{6}$)=1,即sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
∴A-$\frac{π}{6}$=$\frac{π}{6}$或$\frac{5π}{6}$,解得A=$\frac{π}{3}$,或A=π(舍去),
故A=$\frac{π}{3}$;
(2)由余弦定理可得a2=b2+c2-2bccosA
=b2+c2-bc=(b+c)2-3bc=4-3bc,
由基本不等式可得bc≤($\frac{b+c}{2}$)2=1,當(dāng)且僅當(dāng)b=c=1時(shí)取等號,
故-bc≥-1,∴-3bc≥-3,故a2=4-3bc≥1,
∴a的最小值為1,此時(shí)△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$.
點(diǎn)評 本題考查正余弦定理解三角形,涉及基本不等式求最值和和差角的三角函數(shù)公式,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$ | B. | $-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$ | ||
C. | $-\frac{{9+4\sqrt{2}}}{7}$ | D. | $-\frac{{9-4\sqrt{2}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | [2,2$\sqrt{2}$] | C. | [1,2$\sqrt{2}$] | D. | [$\sqrt{3}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α∥β,l?α,n?β⇒l∥n | B. | l⊥n,l⊥α⇒n∥α | C. | l⊥α,l∥β⇒α⊥β | D. | α⊥β,l?α⇒l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\sqrt{3}$x | B. | y=±$\frac{\sqrt{3}}{3}$x | C. | y=±$\frac{1}{3}$x | D. | y=±3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 64 | C. | 24 | D. | 32 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com