20.已知傾斜角為θ的直線,與直線x-3y+1=0垂直,則tanθ=( 。
A.$\frac{1}{3}$B.3C.-3D.$-\frac{1}{3}$

分析 利用直線相互垂直的充要條件即可得出.

解答 解:∵傾斜角為θ的直線,與直線x-3y+1=0垂直,
∴$-\frac{1}{-3}$×tanθ=-1,
解得tanθ=-3.
故選:C.

點評 本題考查了直線相互垂直的充要條件,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.閱讀如圖所示的程序框圖,若輸入m=2016,則輸出S等于( 。
A.10072B.10082C.10092D.20102

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知數(shù)列{an}中,a1=25,4an+1=4an-7,若用Sn表示該數(shù)列前n項和,則( 。
A.當n=15時,Sn取到最大值B.當n=16時,Sn取到最大值
C.當n=15時,Sn取到最小值D.當n=16,Sn取到最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.從5位男教師和3為女教師中選出3位教師,派往郊區(qū)3所學校支教,每校1人.要求這3位教師中男、女教師都要有,則不同的選派方案共有(  )
A.250種B.450種C.270種D.540種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{4-x}{4x-2}$,在區(qū)間(0,$\frac{1}{2}$)∪($\frac{1}{2}$,2)上函數(shù)f(x)≥1的概率為(  )
A.$\frac{1}{4}$B.$\frac{7}{20}$C.$\frac{9}{20}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\frac{1}{3}a{x^3}-\frac{1}{2}b{x^2}+x$,連續(xù)拋擲兩顆骰子得到的點數(shù)分別是a,b,則函數(shù)f′(x)在x=1處取得最值的概率是( 。
A.$\frac{1}{36}$B.$\frac{1}{18}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,則不等式f(log2x)-f(log${\;}_{\frac{1}{2}}$x)≥$\frac{2({e}^{2}-1)}{{e}^{2}+1}$的解集為( 。
A.[$\frac{1}{2}$,+∞)B.[2,+∞)C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若sinB+sinA=$\frac{\sqrt{3}(sin2A-sin2B)}{2(sinB-sinA)}$
(Ⅰ)求角C的大;
(Ⅱ)若△ABC為銳角三角形且滿足$\frac{m}{tanC}=\frac{1}{tanA}+\frac{1}{tanB}$,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,矩形ACEF所在的平面與Rt△ABC所在的平面垂直,D是AF的中點,且AC=BC=AD=$\frac{1}{2}$CE.
(1)證明:DE⊥BC;
(2)求多面體BCDFE與四面體BCDF的體積比.

查看答案和解析>>

同步練習冊答案