計算:sin(-810°)+tan765°+tan1125°+cos(-360°).
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:由條件利用誘導(dǎo)公式化簡可得所給式子的值,可得結(jié)果.
解答: 解:sin(-810°)+tan765°+tan1125°+cos(-360°)=sin(-720°-90°)+tan(720°+45°)+tan(3×360°+45°)+cos(-360°)
=-sin90°+tan45°+tan45°+cos0°=-1+1+1+1=2.
點評:本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=log 
1
4
(1-x)+log 
1
4
(x+3)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率是
1
2
,其左、右頂點分別為A1,A2,B為短軸的一個端點,△A1BA2的面積為2
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l:x=2
2
與x軸交于點D,點P是橢圓C上異于A1,A2的動點,直線A1P,A2P分別交直線l于E,F(xiàn)兩點,證明:|DE|•|DE|恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4,離心率為
1
2
,左右焦點分別為F1,F(xiàn)2,
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M、N,求△F1MN面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=6,|
b
|=8,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了檢查某市的教育實踐活動的落實情況,現(xiàn)從編號依次為001到380的380個單位中,用系統(tǒng)抽樣的方法,抽取2n-1個單位進(jìn)行檢查,已知本次抽樣中,所抽取的編號之和為3040,且第n個編號為160,則所抽的單位數(shù)共有( 。
A、13個B、15個
C、17個D、19個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:若a>c,b>c,則a+b>2c.寫出該命題的逆,否命題并判斷真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,直線x=-
a2
c
與x軸相交于點N,并且滿足
F1F2
=2
NF1
,|
F1F2
|=2,設(shè)A,B是上半橢圓上滿足
NA
NB
,其中λ∈[
1
5
1
3
].
(1)求此橢圓的方程及直線AB的斜率的取值范圍;
(2)過A,B兩點分別作此橢圓的切線,兩切線相交于一點P,求證:點P在一條定直線上,并求點P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)過直線l的平面α截球的截面圓的半徑為
3
,球心到截面圓的圓心距離為5,則球O的表面積為( 。
A、4πB、16π
C、28πD、112π

查看答案和解析>>

同步練習(xí)冊答案