1.若函數(shù)f(x)=3x-1+$\frac{k}{3^x}$為偶函數(shù),則實數(shù)k的值為$\frac{1}{3}$.

分析 利用偶函數(shù)的定義,直接求解即可.

解答 解:∵f(x)=3x-1+$\frac{k}{3^x}$為偶函數(shù),
∴f(-x)=f(x),
∴3-x-1+$\frac{k}{{3}^{-x}}$=3x-1+$\frac{k}{3^x}$,
∴(k-$\frac{1}{3}$)3x+($\frac{1}{3}$-k)3-x=0,
∴k=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查函數(shù)奇偶性的性質(zhì),掌握奇偶函數(shù)的定義是解決問題之關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若f(cosx)=coskx(k∈Z),則f(sinx)=sinkx,則整數(shù)k應(yīng)滿足的條件為k=4n+1,n∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題p:?x∈R,x2+(a-1)x+1≥0成立,命題q:?x0∈R,ax${\;}_{0}^{2}$-2ax0-3>0不成立,若p假q 真.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E、F別是AB、PD的中點.若PA=AD=CD=4.
(Ⅰ)求證:EF⊥AC;
(Ⅱ)求直線FC平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,正方形ABCD中,點E是DC的中點,CF:FB=2:1,那么$\overrightarrow{EF}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$C.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$D.$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某質(zhì)檢部門要檢驗一批乳制品是否合格,從待抽檢的500待乳制品中抽取40待進行檢驗,利用隨機數(shù)表抽取樣本時,先將500待乳制品按000,001,…,499進行標(biāo)號,如果從以下隨機數(shù)表第2行第3列的數(shù)考試向右讀,則得到的第5個樣本的編號是350

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.橢圓$\frac{x^2}{4}+\frac{y^2}{a^2}=1$與雙曲線$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{2}$=1有相同的焦點,則a的值為( 。
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在集合{1,2,3,4}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點為起點的向量$\overrightarrow{α}$=(a,b).從所有得到的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形.記所有作成的平行四邊形的個數(shù)為n,其中面積不超過4的平行四邊形的個數(shù)為m,則$\frac{m}{n}$=(  )
A.$\frac{4}{15}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知雙曲線${x^2}-\frac{y^2}{3}=1$的離心率為$\frac{m}{2}$,拋物線y2=mx的焦點為F,點p(2,y0)(y0>0)在此拋物線上,M為線段PF的中點,則點M到該拋物線的準(zhǔn)線的距離為$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案