8.已知不等式|x-(a+b-2)|<a+b的解集為偶函數(shù)f(x)的定義域.
(1)求a+b的值;
(2)求a2+b2的最小值.

分析 (1)解絕對(duì)值不等式由偶函數(shù)定義域可知-2+2a+2b-2=0,變形可得a+b=2;
(2)由(1)可得b=2-a,代入可得a2+b2=2(a-1)2+2,由二次函數(shù)可得.

解答 解:(1)不等式|x-(a+b-2)|<a+b可化為-(a+b)<x-(a+b-2)<a+b,
解得-2<x<2a+2b-2,由偶函數(shù)定義域可知-2+2a+2b-2=0,
變形可得a+b=2;
(2)由(1)可得b=2-a,故a2+b2=a2+(2-a)2=2a2-4a+4=2(a-1)2+2,
由二次函數(shù)可知當(dāng)a=1時(shí),上式取最小值2

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,涉及二次函數(shù)的最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.對(duì)于定義在R上的函數(shù)f(x),如果存在實(shí)數(shù)a,使得f(a+x)•f(a-x)=1對(duì)任意實(shí)數(shù)x∈R恒成立,則稱f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時(shí),f(x)的取值范圍為[1,2],則當(dāng)x∈[-2016,2016]時(shí),f(x)的取值范圍為( 。
A.[1,2]B.$[\frac{1}{2},2]$C.$[\frac{1}{2},2016]$D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖.在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),二次函數(shù)y=x2+c的圖象拋物線交x軸于點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交點(diǎn)C(0,-3).
(1)求∠ABC的度數(shù);
(2)若點(diǎn)D是第四象限內(nèi)拋物線上一點(diǎn),△ADC的面積為$\frac{3\sqrt{3}}{2}$,求點(diǎn)D的坐標(biāo);
(3)若將△OBC繞平面內(nèi)某一點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到△O′B′C,點(diǎn)O′,B′均落在此拋物線上,求此時(shí)O′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)g(x)=$\left\{\begin{array}{l}{0,x=0}\\{lo{g}_{2}|x|,x≠0}\end{array}\right.$,f(x)=x2-2x,若關(guān)于x的方程f(g(x))-a=0有四個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線y2=4x+a的焦點(diǎn)在圓(x-1)2+(y+1)2=5的內(nèi)部,則a的取值范圍區(qū)間( 。
A.(-4,12)B.(-1,3)C.(-2,2)D.(-8,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知O為坐標(biāo)原點(diǎn),焦點(diǎn)為F的拋物線E:x2=2py(p>0)上不同兩點(diǎn)A、B均在第一象限.B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)為C,△OFA的外接圓圓心為Q,且$\overrightarrow{OQ}$•$\overrightarrow{OF}$=$\frac{1}{32}$
(1)求拋物線E的標(biāo)準(zhǔn)方程;
(2)兩不同點(diǎn)A、B均在第一象限內(nèi),B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)為C,設(shè)直線OA、OB的傾角分別為α、β,且α+β=$\frac{π}{2}$
①證明:直線AC過(guò)定點(diǎn);
②若A、B、C三點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.現(xiàn)有1角、2角、5角、1元、2元、5元、10元、50元人民幣各一張,100元人民幣2張,從中至少取一張,共可組成不同的幣值種數(shù)( 。
A.1024種B.1023種C.767種D.1535種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若a?α,b?β,a∩b=M,則(  )
A.M∉βB.M?βC.M?αD.M∈β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)f(x)=ax2+bx+c,且不等式f(x)>0的解為1<x<3.
(1)證明:二次函數(shù)f(x)圖象向下平移|a|個(gè)單位頂點(diǎn)在x軸上;
(2)若函數(shù)f(x)-2x的最大值為正數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案