3.已知拋物線y2=4x+a的焦點(diǎn)在圓(x-1)2+(y+1)2=5的內(nèi)部,則a的取值范圍區(qū)間( 。
A.(-4,12)B.(-1,3)C.(-2,2)D.(-8,8)

分析 求得拋物線拋物線的頂點(diǎn)為(-$\frac{a}{4}$,0),可得拋物線的焦點(diǎn)為(1-$\frac{a}{4}$,0),代入圓的方程,解不等式即可得到所求范圍.

解答 解:拋物線y2=4x+a,即為y2=4(x+$\frac{a}{4}$),
則拋物線的頂點(diǎn)為(-$\frac{a}{4}$,0),
可得拋物線的焦點(diǎn)為(1-$\frac{a}{4}$,0),
由焦點(diǎn)在圓(x-1)2+(y+1)2=5的內(nèi)部,
可得(1-$\frac{a}{4}$-1)2+1<5,
解得-8<a<8.
故選:D.

點(diǎn)評(píng) 本題考查拋物線的焦點(diǎn)的求法,注意運(yùn)用拋物線的頂點(diǎn),考查點(diǎn)與圓的位置關(guān)系的條件的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知直線m,nl和平面α,β,且m?α,n?β,α∩β=l,給出命題p:“若m與n不垂直,則α與β不垂直”,則在命題q的逆命題、否命題、逆否命題中,真命題中的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將函數(shù)y=cosx的圖象經(jīng)過(guò)怎樣的平移,可以得到函數(shù)$y=sin(x+\frac{π}{6})$的圖象(  )
A.向左平移$\frac{π}{6}$個(gè)單位B.向左平移$\frac{π}{3}$個(gè)單位
C.向右平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到如下數(shù)據(jù):
 單價(jià)x(元) 4.4 4.13.6 3.22.71.8
 銷量y(千件) 1.62 m4.8 5.2 6
由表中數(shù)據(jù),求的線性回歸方程$\widehat{y}$=-2x+10.6,則表中m的值為( 。
A.4.2B.4.4C.4.6D.4.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.α、β、γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥β,β⊥γ,則α∥γ;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確的命題序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知不等式|x-(a+b-2)|<a+b的解集為偶函數(shù)f(x)的定義域.
(1)求a+b的值;
(2)求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線C:x2=2py(p>0),傾斜角為$\frac{π}{4}$且過(guò)點(diǎn)M(0,1)的直線l與C相交于A,B兩點(diǎn),且$\overrightarrow{AM}$=2$\overrightarrow{MB}$.
(Ⅰ)求拋物線C的方程;
(Ⅱ)拋物線C上一動(dòng)點(diǎn)N,記以MN為直徑的圓的面積為S,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知c>0,設(shè)命題p:y=cx為減函數(shù),命題q:函數(shù)f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$在x∈[$\frac{1}{2}$,2]上恒成立.若p∨q為真命題,p∧q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在底面直徑和高均為4的圓柱體內(nèi)任取一點(diǎn)P,則點(diǎn)P到該圓柱體上、下底面圓心的距離均不小于2的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案