分析 (1)根據(jù)二次函數(shù)與二次不等式的關(guān)系可知f(x)開口向下,對稱軸為x=2,且f(1)=0.用a表示出b,c,代入f(x)的頂點縱坐標(biāo)證明fmax(x)=|a|即可.
(2)根據(jù)(1)中a,b,c的關(guān)系求出g(x)=f(x)-2x的最大值,令gmax(x)>0解出.
解答 解:(1)∵不等式f(x)>0的解為1<x<3,
∴a<0,f(1)=f(3)=0,∴$\left\{\begin{array}{l}{a+b+c=0}\\{-\frac{2a}=2}\end{array}\right.$,整理得$\left\{\begin{array}{l}{b=-4a}\\{c=3a}\end{array}\right.$.
∴fmax(x)=$\frac{4ac-^{2}}{4a}$=$\frac{12{a}^{2}-16{a}^{2}}{4a}$=-a=|a|.
∴二次函數(shù)f(x)圖象向下平移|a|個單位頂點在x軸上.
(2)令g(x)=f(x)-2x=ax2+(b-2)x+c.
∴gmax(x)=$\frac{4ac-(b-2)^{2}}{4a}$=$\frac{12{a}^{2}-(4a+2)^{2}}{4a}$=$\frac{-{a}^{2}-4a-1}{a}$>0.
∵a<0,∴a2+4a+1>0,解得a<-2-$\sqrt{3}$或a>-2+$\sqrt{3}$.
∴a的取值范圍是(-∞,-2-$\sqrt{3}$)∪(-2+$\sqrt{3}$,0).
點評 本題考查了二次函數(shù)與二次不等式的關(guān)系,二次函數(shù)的最值,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 96種 | B. | 48種 | C. | 24種 | D. | 100種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=0,b=-3 | B. | a=-3,b=0 | C. | a=3,b=0 | D. | a=0,b=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com