分析 消元可得$\frac{1}{2x}$+$\frac{x}{y+1}$=-1+$\frac{3x+2}{-2{x}^{2}+4x}$,然后換元令3x+2=t,x=$\frac{1}{3}$(t-2),代入要求的式子由基本不等式可得.
解答 解:∵x+y=1,x>0,y>0,∴y=1-x
∴$\frac{1}{2x}$+$\frac{x}{y+1}$=$\frac{1}{2x}$+$\frac{x}{2-x}$=$\frac{2-x+2{x}^{2}}{2x(2-x)}$
=$\frac{-(-2{x}^{2}+4x)+3x+2}{-2{x}^{2}+4x}$
=-1+$\frac{3x+2}{-2{x}^{2}+4x}$,
令3x+2=t,則t∈(2,5)且x=$\frac{1}{3}$(t-2),
∴-1+$\frac{3x+2}{-2{x}^{2}+4x}$=-1+$\frac{t}{-\frac{2}{9}(t-2)^{2}+\frac{4}{3}(t-2)}$
=-1+$\frac{9t}{-2{t}^{2}+20t-32}$=-1+$\frac{9}{-2t-\frac{32}{t}+20}$,
由基本不等式可得-2t-$\frac{32}{t}$=-2(t+$\frac{16}{t}$)≤-2•2$\sqrt{t•\frac{16}{t}}$=-16,
當(dāng)且僅當(dāng)t=$\frac{16}{t}$即t=3x+2=4即x=$\frac{2}{3}$時(shí)取等號(hào),
∴-2t-$\frac{32}{t}$+20≤4,∴$\frac{9}{-2t-\frac{32}{t}+20}$≥$\frac{9}{4}$,
∴-1+$\frac{9}{-2t-\frac{32}{t}+20}$≥$\frac{5}{4}$,
故答案為:$\frac{5}{4}$.
點(diǎn)評(píng) 本題考查基本不等式求最值,涉及消元和換元的思想,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1)∪(9,+∞) | B. | ($\frac{2}{3}$,1) | C. | ($\frac{2}{3}$,3) | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-|x| | B. | y=$\frac{1}{x}$ | C. | y=3-x | D. | y=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com