分析 在△ABC中,D為BC的中點(diǎn),$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{BC}$)=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$,利用O為AD的中點(diǎn),可定$\overrightarrow{AO}$=$\frac{1}{2}$$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{BC}$,即可找到λ和μ的關(guān)系,最終得到答案.
解答 解:在△ABC中,D為BC的中點(diǎn),$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{BC}$)=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$
∵O為AD的中點(diǎn),
∴$\overrightarrow{AO}$=$\frac{1}{2}$$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{BC}$
∵$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$,
∴λ+μ=$\frac{3}{4}$,
故答案為:$\frac{3}{4}$.
點(diǎn)評(píng) 本題主要考查平面向量的基本定理,即平面內(nèi)任一向量都可由兩不共線的向量唯一表示出來(lái).屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
類別 | 1號(hào)廣告 | 2號(hào)廣告 | 3號(hào)廣告 | 4號(hào)廣告 |
廣告次數(shù) | 20 | 30 | 40 | 10 |
時(shí)間t(分鐘/人) | 2 | 3 | 4 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$f($\frac{π}{6}$)$<\sqrt{3}$f($\frac{π}{4}$)$<\sqrt{2}$f($\frac{2π}{3}$) | B. | $\sqrt{6}$f($\frac{π}{6}$)$<\sqrt{2}$f($\frac{2π}{3}$)$<\sqrt{3}$f($\frac{π}{4}$) | C. | $\sqrt{2}$f($\frac{2π}{3}$)$<\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{6}$f($\frac{π}{6}$) | D. | $\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{6}$f($\frac{π}{6}$)$\sqrt{2}$f($\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{\frac{1}{4}}$+$\frac{{y}^{2}}{1}$=1 | B. | $\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1 | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{1}$=1 | D. | $\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com