5.函數(shù)y=$\frac{2x}{x-1}$的值域?yàn)閧y|y≠2}.

分析 函數(shù)y=$\frac{2x}{x-1}$=$\frac{2(x-1)+2}{x-1}$=2+$\frac{2}{x-1}$,利用反比例函數(shù)的單調(diào)性即可得出.

解答 解:函數(shù)y=$\frac{2x}{x-1}$=$\frac{2(x-1)+2}{x-1}$=2+$\frac{2}{x-1}$,
當(dāng)x>1時(shí),$\frac{2}{x-1}$>0,∴y>2.
當(dāng)x<1時(shí),$\frac{2}{x-1}$<0,∴y<2.
綜上可得:函數(shù)y=$\frac{2x}{x-1}$的值域?yàn)閧y|y≠2}.
故答案為:{y|y≠2}.

點(diǎn)評(píng) 本題考查了反比例函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某電子廣告牌連續(xù)播出四個(gè)廣告,假設(shè)每個(gè)廣告所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計(jì),以往播出100次所需的時(shí)間(t)的情況如下:
類(lèi)別1號(hào)廣告2號(hào)廣告3號(hào)廣告4號(hào)廣告
廣告次數(shù)20304010
時(shí)間t(分鐘/人)2346
每次隨機(jī)播出,若將頻率視為概率.
(Ⅰ)求恰好在第6分鐘后開(kāi)始播出第3號(hào)廣告的概率;
(Ⅱ)用X表示至第4分鐘末已完整播出廣告的次數(shù),求x的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知點(diǎn)O(0,0),A(-8,0),B(0,3),Q(3,2),動(dòng)點(diǎn)P滿(mǎn)足條件|PA|=3|PO|.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l經(jīng)過(guò)點(diǎn)B,直線m經(jīng)過(guò)點(diǎn)Q.問(wèn)是否存在直線l使之被軌跡C截得的線段MN恰被直線m垂直平分?若存在,求出直線l與直線m的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若角終邊上有一點(diǎn)P(9,-m)且sinα=-$\frac{3}{5}$,則m的值為$\frac{27}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一直線l繞其上一點(diǎn)P逆時(shí)針旋轉(zhuǎn)15°后得到直線$\sqrt{3}x$-y-$\sqrt{3}$=0,再逆時(shí)針旋轉(zhuǎn)75°后得到直線x+y-1=0,則l的方程為( 。
A.x-y-1=0B.x+y-1=0C.$\sqrt{3}$x+y-$\sqrt{3}$=0D.$\sqrt{3}$x-y+$\sqrt{3}$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=lg(1-x)+lg(3x+1)的定義域是( 。
A.[-$\frac{1}{3}$,1]B.(-$\frac{1}{3}$,$\frac{1}{3}$)C.(-$\frac{1}{3}$,1)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x+y=1,x>0,y>0,則$\frac{1}{2x}$+$\frac{x}{y+1}$的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若一個(gè)底面邊長(zhǎng)為$\frac{\sqrt{6}}{2}$,側(cè)棱長(zhǎng)為$\sqrt{6}$的正六棱柱的所有頂點(diǎn)都在一個(gè)球面上,求該球的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知拋物線y2=2px的準(zhǔn)線與x2-y2=2的左準(zhǔn)線重合,則拋物線的焦點(diǎn)為(1,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案