15.已知數(shù)列{an}的通項(xiàng)公式為an=en(e為自然對(duì)數(shù)的底數(shù));
(Ⅰ)證明數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=lnan,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

分析 (Ⅰ)an=en,只要證明$\frac{{a}_{n+1}}{{a}_{n}}$=非0常數(shù)即可.
(Ⅱ)由(Ⅰ)知:bn=lnan=n,可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂項(xiàng)求和”即可得出.

解答 (Ⅰ)證明:∵an=en,
a1=e,且$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{e}^{n+1}}{{e}^{n}}$=e,
∴數(shù)列{an}是首項(xiàng)為e,公比為e的等比數(shù)列.
(Ⅱ)解:由(Ⅰ)知:bn=lnan=lnen=n,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
其前n項(xiàng)和Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了變形推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x=1}\\{3f(x-1),x≥2}\end{array}\right.$,則f(3)=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z=1-i,則$\frac{z-1}{{z}^{2}}$=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線C:y2=2px(p>0),過(guò)其點(diǎn)F的直線l交拋物線C于點(diǎn)A,B,若|AF|:|BF|=3:1,則直線l的斜率等于( 。
A.±$\frac{\sqrt{3}}{3}$B.±1C.±$\sqrt{2}$D.±$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=x${\;}^{-{t}^{2}+2t+3}$為偶函數(shù)(t∈z),且在x∈(0,+∞)單調(diào)遞增.
(1)求f(x)的表達(dá)式;
(2)若函數(shù)g(x)=loga[a$\sqrt{f(x)}$-x]在區(qū)間[2,4]上單調(diào)遞減函數(shù)(a>0且a≠1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列四種函數(shù)中,表示同一函數(shù)的是( 。
A.y=x-1與$y=\sqrt{{{(x-1)}^2}}$B.y=x2與$y={(\sqrt{x})^4}$C.y=4lgx與y=2lgx2D.y=x2與$y=\root{3}{x^6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f定義如表,一列數(shù)x0,x1,x2,x3…滿足x0=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2015的值為(  )
x12345
f(x)41352
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S2=16,且a1,a2-4,a3-8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{2n}$($\frac{{a}_{n}-2}{2n}$)n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=Sn-1+an-1+2n-2,(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若xn=1+$\frac{1}{{a}_{n}}$,設(shè)數(shù)列{xn}的前n項(xiàng)積為Tn,求證:
(i)(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
(ii)Tn≤2$(1+\frac{1}{{2}^{n}})^{{2}^{n}-2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案