6.某幾何體的三視圖如圖所示,則該幾何體的體積為4.

分析 由已知中的三視圖,我們可以判斷出幾何體的形狀,進而求出幾何體的底面面積和高后,代入棱錐體積公式,可得答案

解答 解:由已知中的三視圖可得幾何體是一個三棱錐
且棱錐的底面是一個以2+2=4為底,以3為高的三角形,棱錐的高為2,
故棱錐的體積V=$\frac{1}{3}$•$\frac{1}{2}$(2+2)•3•2=4;
故答案為:4.

點評 本題考查的知識點是由三視圖求體積,其中根據(jù)已知判斷出幾何體的形狀是解答本題的關鍵

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.
(1)求二面角A-PB-C的余弦值.
(2)在線段CP上是否存在一點E,使得DE⊥PB,若存在,求線段CE的長度,不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ex(sinx+cosx)+a,g(x)=(a2-a+10)ex(a∈R且a為常數(shù)).
(Ⅰ)若曲線y=f(x)在(0,f(0))處的切線過點(1,2),求實數(shù)M的值;
(Ⅱ)判斷函數(shù)φ(x)=$\frac{{b(1+{e^2})g(x)}}{{({a^2}-a+10){e^2}x}}\;-\frac{1}{x}$+1+lnx(b>1)在(0,+∞)上的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知x,y的取值如表:
x3456
y2.5t44.5
從散點圖分析,y與x線性相關,且回歸方程為$\widehat{y}$=0.7x+0.35,則t的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.為了解大學生觀看某電視節(jié)目是否與性別有關,一所大學心理學教師從該校學生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人.
喜歡看該節(jié)目不喜歡看該節(jié)目合計
女生5
男生10
合計50
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關?說明你的理由;
(Ⅲ)已知喜歡看該節(jié)目的10位男生中,5位喜歡看新聞,3位喜歡看動畫片,2位喜歡看韓劇,現(xiàn)從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求喜歡看動畫片的男生甲和喜歡看韓劇的男生乙不全被選中的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①當K2≥3.841時有95%的把握認為ξ、η有關聯(lián);
②當K2≥6.635時有99%的把握認為ξ、η有關聯(lián).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,α∈($\frac{π}{6}$,$\frac{π}{2}$),則cosα的值為$\frac{{15\sqrt{3}-8}}{34}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知點P是曲線y=$\frac{{3-{e^x}}}{{{e^x}+1}}$上一動點,α為曲線在點P處的切線的傾斜角,則α的最小值是( 。
A.0B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生的時間與性別的關系,得到下面的數(shù)據(jù):出生時間在晚上的男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將下面的2×2列聯(lián)表補充完整;
出生時間
性別
晚上白天合計
男嬰
女嬰
合計
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在讀書月活動中,每人需要從5本社會科學類圖書和4本自然科學類圖書中任選若干本閱讀,要求社會科學類圖書比自然科學類圖書多1本,則每個人的不同的選書方法有( 。
A.70B.72C.121D.140

查看答案和解析>>

同步練習冊答案