【題目】已知橢圓 )的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知點(diǎn)為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問:在軸上是否存在定點(diǎn),使得為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.

【答案】(;.

【解析】試題分析:(1)由,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸為半徑與直線相切,求出的值,由此可求出橢圓的方程;

2)由,由此利用韋達(dá)定理、向量的數(shù)量積,結(jié)合已知條件能求出在軸上存在點(diǎn),使為定值,定點(diǎn)為。

試題解析:()由,得,即,

又以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓為

且圓與直線相切,

所以,代入

.

所以橢圓的方程為.

)由,且

設(shè),則,

根據(jù)題意,假設(shè)軸上存在定點(diǎn),使得為定值,則有

要使上式為定值,即與無關(guān),則應(yīng),

,此時(shí)為定值,定點(diǎn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ).

(1)若直線和函數(shù)的圖象相切,求的值;

(2)當(dāng)時(shí),若存在正實(shí)數(shù),使對(duì)任意都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本公司計(jì)劃2008年在甲,乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲,乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲,乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元,問該公司如何分配在甲,乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知任意角α的終邊經(jīng)過點(diǎn)P(﹣3,m),且cosα=﹣
(1)求m的值.
(2)求sinα與tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個(gè)命題中:
①設(shè)有一個(gè)回歸方程 =2﹣3x,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為0.8.
其中真命題的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},則A∩B=(
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)求函數(shù)y=2x+4 ,x∈[0,2]的值域;
(2)化簡(jiǎn):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若a<5,則對(duì)任意 ,有

查看答案和解析>>

同步練習(xí)冊(cè)答案