2.有一列球體,半徑組成以1為首項(xiàng),$\frac{1}{2}$為公比的等比數(shù)列,體積分別記為V1,V2,…,Vn,…,則$\underset{lim}{n→∞}$(V1+V2+…Vn)=$\frac{32}{21}$π.

分析 由題意,V1,V2,…,Vn,…,組成以$\frac{4}{3}π$為首項(xiàng),$\frac{1}{8}$為公比的等比數(shù)列,利用無(wú)窮等比數(shù)列的求和公式,即可得出結(jié)論.

解答 解:由題意,V1,V2,…,Vn,…,組成以$\frac{4}{3}π$為首項(xiàng),$\frac{1}{8}$為公比的等比數(shù)列,
∴$\underset{lim}{n→∞}$(V1+V2+…Vn)=$\frac{\frac{4}{3}π}{1-\frac{1}{8}}$=$\frac{32}{21}$π.
故答案為:$\frac{32}{21}$π.

點(diǎn)評(píng) 本題考查無(wú)窮等比數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=x2-3|x|-k有兩個(gè)零點(diǎn),則k的取值范圍是( 。
A.(0,+∞)$∪\{-\frac{9}{4}\}$B.$[-\frac{9}{4},+∞)$C.[0,+∞)D.$(-∞,-\frac{9}{4})∪\{0\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)=\sqrt{|{x+1}|+|{x+2}|-a}$.
(Ⅰ)若a=5,求函數(shù)f(x)的定義域A;
(Ⅱ)設(shè)a,b∈(-1,1),證明$\frac{|a+b|}{2}<|1+\frac{ab}{4}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知α、β為平面,A、B、M、N為點(diǎn),d為直線,下列推理錯(cuò)誤的是(  )
A.A∈d,A∈β,B∈d,B∈β⇒d?β
B.M∈α,M∈β,N∈α,N∈β⇒α∩β=MN
C.A∈α,A∈β⇒α∩β=A
D.A、B、M∈α,A、B、M∈β,且A、B、M不共線⇒α、β重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)若$cosθ=\frac{{\sqrt{2}}}{3}$,求$\frac{{sin(θ-5π)cos(θ-\frac{π}{2})cos(8π-θ)}}{{sin(θ-\frac{3π}{2})sin(-θ-4π)}}$的值.
(2)求函數(shù)$f(x)=lg(2cosx-1)+\sqrt{49-{x^2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x|x-a|+b,x∈R.
(1)當(dāng)b=0時(shí),判斷f(x)的奇偶性,并說(shuō)明理由;
(2)當(dāng)a=1,b=1時(shí),若f(2x)=$\frac{5}{4}$,求x的值;
(3)若-1≤b<0,且對(duì)任意x∈[0,1]不等式 f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-6≤α≤6},則A∩B等于( 。
A.B.{α|-6≤α≤π}
C.{α|0≤α≤π}D.{α|-6≤α≤-π,或0≤α≤π}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+4}$.
(1)求證{$\frac{1}{{a}_{n}}$+$\frac{1}{3}$}為等比數(shù)列;
(2)求證:Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在數(shù)列{an}中,an=a2n-an(a≠0),求{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案