20.已知在△ABC中,AB=1,AC=2,BC=$\sqrt{7}$,D為CB上一點(diǎn),$\overrightarrow{BD}$=2$\overrightarrow{DC}$,點(diǎn)E為AC的中點(diǎn),則$\overrightarrow{BE}•\overrightarrow{AD}$=(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{1}{2}$D.$\frac{3}{2}$

分析 運(yùn)用向量的數(shù)量積的定義和余弦定理可得$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,再由向量的中點(diǎn)表示和向量共線的表示,結(jié)合向量數(shù)量積的性質(zhì):向量的平方即為模的平方,計(jì)算即可得到所求.

解答 解:$\overrightarrow{BA}$•$\overrightarrow{BC}$=1•$\sqrt{7}$•cosB=$\frac{1}{2}$(1+7-4)=2,
$\overrightarrow{BE}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),$\overrightarrow{AD}$=$\overrightarrow{BD}$-$\overrightarrow{BA}$=$\frac{2}{3}$$\overrightarrow{BC}$-$\overrightarrow{BA}$,
即有$\overrightarrow{BE}•\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{BC}$2-$\frac{1}{2}$$\overrightarrow{BA}$2-$\frac{1}{6}$$\overrightarrow{BA}$•$\overrightarrow{BC}$
=$\frac{1}{3}$×7-$\frac{1}{2}$×1-$\frac{1}{6}$×2
=$\frac{3}{2}$,
故選D.

點(diǎn)評 本題考查向量的數(shù)量積的定義和性質(zhì),考查余弦定理的運(yùn)用,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{a2n-1}是首項(xiàng)為1的等差數(shù)列,數(shù)列{a2n}是首項(xiàng)為2的等比數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),已知S3=a4,a3+a5=a4+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足S2n<100的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某教育網(wǎng)站需要老師為其命制試題,組建題庫,已知吳老師、王老師、張老師三位老師命制的試題數(shù)分別為350道,700道、1050道,現(xiàn)用分層抽樣的方法隨機(jī)抽取6道試題進(jìn)行科學(xué)性,嚴(yán)密性,正確性檢驗(yàn).
(1)求從吳老師、王老師、張老師三位老師中分別抽取的試題的題數(shù);
(2)從抽取的6道試題中任意取出2道,已知這2道試題都不是吳老師命制的,求其中至少有一道是王老師命制的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,AC=$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow$+(-$\overrightarrow{a}$)•$\overrightarrow{c}$+(-$\overrightarrow{a}$)•(-$\overrightarrow{c}$),試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=2cosx•sin(x+$\frac{π}{6}$)+$\sqrt{3}$sinx•cosx-sin2x.
(1)求函數(shù)y=f(x)(0<x<π)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A滿足f(A)=2,而$\overrightarrow{AB}•\overrightarrow{AC}$=$\sqrt{3}$,求BC邊上的高AD長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,已知P為線段AB上一點(diǎn),且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{AP}$=$\overrightarrow{PB}$,求x,y的值;
(2)若$\overrightarrow{AP}$=3$\overrightarrow{PB}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°,求$\overrightarrow{OP}$$•\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題p:函數(shù)f(x)=x3-(a+1)x-1在區(qū)間[0,1]上單調(diào)遞增;命題q:?x0∈R,x2+2ax+2-a<0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x2-mx+1>0對0≤x≤$\frac{1}{2}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.定義在區(qū)間(-1,1)上的函數(shù)f(x)滿足:對任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當(dāng)x∈(-1,0)時,有f(x)>0.
(1)判定f(x)在區(qū)間(-1,1)上的奇偶性,并說明理由;
(2)判定f(x)在區(qū)間(-1,1)上的單調(diào)性,并給出證明;
(3)求證:f($\frac{1}{{n}^{2}+3n+1}$)=f($\frac{1}{n+1}$)-f($\frac{1}{n+2}$)

查看答案和解析>>

同步練習(xí)冊答案