4.求下列各式的值:
(1)tan405°-sin450°+cos750°;
(2)mtan0-ncos$\frac{5}{2}$π-psin3π-qcos$\frac{11}{2}$π+rsin(-5π).

分析 直接利用三角函數(shù)的誘導(dǎo)公式逐一化簡(jiǎn)求值得答案.

解答 解:(1)tan405°-sin450°+cos750°
=tan45°-sin90°+cos30°=1-1+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$;
(2)mtan0-ncos$\frac{5}{2}$π-psin3π-qcos$\frac{11}{2}$π+rsin(-5π)
=m×0-n×0-p×0-q×0+r×0=0.

點(diǎn)評(píng) 本題考查利用誘導(dǎo)公式化簡(jiǎn)求值,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合{α|k•180°+45°≤α≤k•180°+90°,k∈Z}中,角所表示的范圍(陰影部分)正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=cos(ωx+$\frac{π}{2}$)在[0,$\frac{π}{4}$]上為增函數(shù),則ω的取值范圍為( 。
A.[-2,0)B.[-3,0)C.[-2,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=x2-1,那么f[f(x)]=(  )
A.x4-1B.x4+2x2C.x4+1D.x4-2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將下列三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),并填在題中橫線上:
(1)cos210°=-cos30°;
(2)sin263°42′=-sin83°42′;
(3)cos(-$\frac{π}{6}$)cos$\frac{π}{6}$; 
(4)sin(-$\frac{5}{3}$π)=sin$\frac{π}{3}$;
(5)cos(-$\frac{11}{9}$π)=-cos$\frac{π}{9}$;
(6)cos(-104°26′)=-sin14°26′;
(7)tan632°24′=-tan87°36′;
(8)tan$\frac{17π}{6}$=-tan$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a=2”是“復(fù)數(shù)z=$\frac{a+2i}{1-i}$的對(duì)應(yīng)點(diǎn)落在復(fù)平面的虛軸上”的 ( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果關(guān)于x的不等式|x-2|+|x-a|≥a恒成立,則a的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)復(fù)數(shù)z的共扼復(fù)數(shù)為$\overline{z}$,若z+$\overline{z}$=4,z•$\overline{z}$=5,且復(fù)數(shù)z在復(fù)平面上表示的點(diǎn)在第四象限,則z=( 。
A.2一$\sqrt{21}$iB.$\sqrt{21}$一2iC.1一2iD.2一i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={0,2,3},B={x|x=ab,a,b∈A且a≠b},則B的子集有4個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案