12.設(shè)函數(shù)f(x)=x2-1,那么f[f(x)]=(  )
A.x4-1B.x4+2x2C.x4+1D.x4-2x2

分析 根據(jù)已知中函數(shù)f(x)=x2-1,用x2-1替換x后,整理可得f[f(x)].

解答 解:∵f(x)=x2-1,
∴f[f(x)]=(x2-1)2-1=x4-2x2,
故選:D

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)解析式的求解及常用方法,熟練掌握代入法,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若變量a,b滿足約束條件$\left\{\begin{array}{l}{a≥1}\\{a^{3}≥81}\\{{a}^{3}b≤81}\end{array}\right.$,求u=$\frac{{a}^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)P為y=x2+1上的一動點(diǎn),A(0,-3),$\overrightarrow{AQ}$=$\frac{1}{3}$$\overrightarrow{AP}$,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y2=2px(p>0)的弦PQ的中點(diǎn)為(x0,y0)(y0≠0),則弦PQ的斜率是(  )
A.$\frac{p}{{y}_{0}}$B.-$\frac{p}{{y}_{0}}$C.px0D.-px0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)f(x)=x2+11x+7.則f(x+1)=( 。
A.x2-13x+19B.x2-13x+18C.x2+13x+19D.x2+13x+18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{m}$=(sinα-2,-cosα),$\overrightarrow{n}$=(-sinα,cosα),其中α∈R.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求角α;
(2)若|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{2}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列各式的值:
(1)tan405°-sin450°+cos750°;
(2)mtan0-ncos$\frac{5}{2}$π-psin3π-qcos$\frac{11}{2}$π+rsin(-5π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)在[a,b]上有定義,且對任意x1,x2∈[a,b],有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{1}{2}[f({x_1})+f({x_2})]$,則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,4]上具有性質(zhì)P,現(xiàn)給出如下命題:
①f(x)在[1,4]上的圖象是連續(xù)不斷的;
②f(x2)在[1,2]上具有性質(zhì)P;
③若f(x)在x=$\frac{5}{2}$處取得最大值1,則f(x)=1,x∈[1,4];
④對任意x1,x2,x3,x4∈[1,4],有$f(\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4})$≤$\frac{1}{4}[f({x_1})+f({x_2})+f({x_3})+f({x_4})]$.
其中正確命題的序號是(  )3O.
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的減函數(shù),A(0,1),B(4,-1)是其圖象上兩點(diǎn),那么|f(x)|<1的解集是( 。
A.(0,4)B.(-1,3)C.(-∞,0)∪(4,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案