15.已知函數(shù)f(x)=ex+e-x,若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則該切點(diǎn)的橫坐標(biāo)等于( 。
A.ln2B.2ln2C.2D.$\sqrt{2}$

分析 求出導(dǎo)數(shù),設(shè)出切點(diǎn),可得切線的斜率,解方程可得切點(diǎn)的橫坐標(biāo).

解答 解:f(x)=ex+e-x,
導(dǎo)數(shù)為f′(x)=ex-e-x,
設(shè)切點(diǎn)為(m,n),
則em-e-m=$\frac{3}{2}$,
解得m=ln2,
故選:A.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查轉(zhuǎn)化思想以及運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an}中,若a3+a6+a9=12,則數(shù)列{an}的前11項(xiàng)和等于(  )
A.22B.33C.44D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.《張丘建算經(jīng)》是我國南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布585尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{1}{2}$尺B.$\frac{2}{3}$尺C.1尺D.$\frac{3}{2}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),則$\overrightarrow a•\overrightarrow b$=( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,△ABC中,$\frac{CD}{DA}=\frac{AE}{EB}=\frac{1}{2}$,記$\overrightarrow{BC}=\overrightarrow{a,}\overrightarrow{CA}=\overrightarrow b$,則$\overrightarrow{DE}$=$\frac{1}{3}(\overrightarrow b-\overrightarrow a)$.(用$\overrightarrow a$和$\overrightarrow b$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)$α∈(\frac{π}{2},π)$,且$sinα(sinα+cosα)=\frac{21}{25}$,則tanα的值為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線C1:$\frac{x^2}{16}-\frac{y^2}{4}$=1,雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,M 是雙曲線C2 一條漸近線上的點(diǎn),且OM⊥MF2,若△OMF2的面積為 16,且雙曲線C1,C2的離心率相同,則雙曲線C2的實(shí)軸長為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知cosα=-$\frac{2}{3}$,則$\frac{1}{1+ta{n}^{2}α}$=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為$\sqrt{2}$的正方形,AA1=3,E是AA1的中點(diǎn),過C1作C1F⊥平面BDE與平面ABB1A1交于點(diǎn)F,則CF與平面ABCD所成角的正切值為$\frac{5}{6}$.

查看答案和解析>>

同步練習(xí)冊答案