7.已知全集U={1,2,3,4,5},A={1,2,3},那么∁UA的子集個(gè)數(shù)有4個(gè).

分析 根據(jù)全集U與A,求出A的補(bǔ)集,找出A補(bǔ)集子集的個(gè)數(shù)即可.

解答 解:∵全集U={1,2,3,4,5},A={1,2,3},
∴∁UA={4,5},
則∁UA的子集個(gè)數(shù)有22=4個(gè).
故答案為:4

點(diǎn)評(píng) 此題考查了補(bǔ)集及其運(yùn)算,熟練掌握補(bǔ)集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知x>2,求$y=x+\frac{3}{x-2}$的最小值;
(2)已知$0<x<\frac{1}{2}$,求y=3x(1-2x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.集合I={1,2,3,4,5},集合A、B為集合I的兩個(gè)非空子集,若集合A中元素的最大值小于集合B中元素的最小值,則滿足條件的A、B的不同情形有( 。┓N.
A.46B.47C.48D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列各式的值.
(1)log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$.
(2)$2×{(\root{3}{2}×\sqrt{3})^6}+{({\sqrt{2\sqrt{2}}})^{\frac{4}{3}}}-4×{({\frac{16}{49}})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}+{(-2012)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.Sn為等差數(shù)列{an}的前n項(xiàng)和,若a3+a11=12,則S13=( 。
A.60B.78C.156D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)證明不等式$\frac{x}{1+x}$<ln(1+x)<x,x>0
(2)在數(shù)列{an}中.已知a1=$\frac{1}{2}$,且$\frac{{a}_{n}{a}_{n-1}}{{a}_{n-1}-{a}_{n}}$=1+$\frac{1}{{n}^{2}-n-1}$,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a>b>0,當(dāng)a2+$\frac{4}{b(a-b)}$取得最小值時(shí),函數(shù)f(x)=$\frac{a}{si{n}^{2}x}$+bsin2x的最小值為( 。
A.3B.2$\sqrt{2}$C.5D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓M1:(x+4)2+y2=25,圓M2:x2+(y-3)2=1,一動(dòng)圓P與這兩個(gè)圓都外切,試求動(dòng)圓圓心P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\frac{cosθ}{\sqrt{1+ta{n}^{2}θ}}$+$\frac{sinθ}{\sqrt{1+\frac{1}{ta{n}^{2}θ}}}$=-1,則θ( 。
A.在第二象限B.在第三象限C.在第四象限D.在第一象限

查看答案和解析>>

同步練習(xí)冊(cè)答案