19.已知∅?{x|x2-x-a=0},則實數(shù)a的取值范圍是a≥-$\frac{1}{4}$.

分析 由題意可得x2-x-a=0有實根,由△≥0,解之可得.

解答 解:由題意可得x2-x-a=0有實根,
故△=(-1)2-4×1×(-a)≥0
解得a≥-$\frac{1}{4}$.
故答案為:a≥-$\frac{1}{4}$.

點評 本題考查集合的包含關(guān)系的確定,涉及一元二次方程根的個數(shù)的判斷,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.式子$\frac{a}{|a|}$+$\frac{|b|}$+$\frac{c}{|c|}$+$\frac{\sqrt{-b}}{|\sqrt{-b}|}$的所有可能取值組成的集合是{0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A={a,b,c,d,e},B={a,b,d,m},定義A*B={m},求B*A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知對所有的有序正整數(shù)對(m,n)滿足下述條件:
①f(m,1)=1;
②若m<n,f(m,n)=0;
③f(m+1,n)=n[f(m,n)+f(m,n-1)];
則f(5,5)=120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.求函數(shù)y=$\sqrt{{x}^{2}-8x+17}$+$\sqrt{{x}^{2}+4}$的最小值為( 。
A.$\sqrt{5}$B.3C.5D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=ln($\sqrt{1+{x}^{2}}$-x),則f(lg2)+f(lg$\frac{1}{2}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={x|y=$\sqrt{4-{x}^{2}}$},函數(shù)f(x)滿足:①函數(shù)f(x)的定義域為A;②函數(shù)f(x)的圖象關(guān)于原點對稱;③當(dāng)x∈[-2,0)時,f(x)=-($\frac{1}{2}$)x+1.若|f(x)|≤n恒成立,則實數(shù)n的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|+|x-2|.
(1)在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(2)解不等式f(x)≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=x2的圖象按向量$\overrightarrow{a}$平移后所得函數(shù)的解析式是y=(x-1)2+2,則$\overrightarrow{a}$=(1,2).

查看答案和解析>>

同步練習(xí)冊答案