6.當(dāng)函數(shù)f(x)=$\frac{{e}^{x}}{x}$取到極值時(shí),實(shí)數(shù)x的值為1.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出x的值即可.

解答 解:f′(x)=$\frac{{xe}^{x}{-e}^{x}}{{e}^{2x}}$=$\frac{x-1}{{e}^{x}}$,
令f′(x)=0,解得:x=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知集合A={x||x-a|≤1},B={x|(x+2)(x-3)>0},且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a=log32,那么log32-2log36用a表示是( 。
A.5a-2B.-a-2C.3a-(1+a)2D.3a-a2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{x}+klnx,k≠0$.
(Ⅰ)當(dāng)k=1時(shí),求函數(shù)f(x)單調(diào)區(qū)間和極值;
(Ⅱ)若關(guān)于x的方程f(x)=k有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)={x^3}-\frac{1}{2}{x^2}+3x+a$(a為常數(shù))
(1)證明函數(shù)f(x)在定義域上單調(diào)遞增;
(2)若函數(shù)f(x)的圖象在x=1處的切線(xiàn)方程為y=kx-1,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=$\frac{{x}^{2}+a}{x+1}$,x∈(0,+∞)在x=1處取得極值,則f(x)的極小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=-\frac{2}{3}a{x^3}+{x^2}(a>0)$,x∈R.
(1)當(dāng)a=1時(shí),求f(x)在點(diǎn)(3,f(3))處的切線(xiàn)方程.
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若函數(shù)f(x)=x2-4ex-ax在R上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍為(-∞,-2ln2-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知a,b,c,d為實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù),且eb=2a-1,d=2c+3,則(a-c)2+(b-d)2的最小值5.

查看答案和解析>>

同步練習(xí)冊(cè)答案