13.拋物線y2=8x上一點(diǎn)到其焦點(diǎn)的距離為20,那么該點(diǎn)坐標(biāo)是(2,±12).

分析 根據(jù)拋物線的定義可知該點(diǎn)到準(zhǔn)線的距離與其到焦點(diǎn)的距離相等,進(jìn)而利用點(diǎn)到直線的距離求得點(diǎn)的橫坐標(biāo)x的值,代入拋物線方程求得y值,即可得到所求點(diǎn)的坐標(biāo).

解答 解:拋物線y2=8x的準(zhǔn)線方程為x=-2,
∵拋物線y2=8x上一點(diǎn)到其焦點(diǎn)距離為20,
則該點(diǎn)到拋物線的準(zhǔn)線的距離為20,
∴所求點(diǎn)的橫坐標(biāo)為18,代入y2=8x,得y=±12.
故答案為:(2,±12).

點(diǎn)評 本題主要考查了拋物線的簡單性質(zhì).在涉及焦點(diǎn)弦和關(guān)于焦點(diǎn)的問題時(shí)常用拋物線的定義來解決,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC為銳角三角形,命題p:不等式logcosC$\frac{cosA}{sinB}$>0恒成立,命題q:不等式logcosC$\frac{cosA}{cosB}$>0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=1+$\frac{1}{x}$(x>0)的反函數(shù)為f-1(x),則不等式f-1(x)>2的解集為$(1,\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某班新年聯(lián)歡會原定的4個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目,如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( 。
A.42B.30C.20D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若等比數(shù)列{an}滿足a1+a3=5,a3+a5=20,則a5+a7=80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知P為橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩焦點(diǎn),且∠F1PF2=$\frac{π}{3}$,求S${\;}_{△{F}_{1}P{F}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)P是圓x2+y2=4上的動(dòng)點(diǎn),點(diǎn)A,B,C是以坐標(biāo)原點(diǎn)為圓心的單位圓上的動(dòng)點(diǎn),且$\overrightarrow{AB}•\overrightarrow{BC}$=0,則|$\overrightarrow{PA}$$+\overrightarrow{PB}$$+\overrightarrow{PC}$|的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知y=f(x)為偶函數(shù),且f(-3)=20,則f(3)=(  )
A.3B.-3C.20D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在y軸上,直線x-2y+3=0與雙曲線交于A、B兩點(diǎn),若|AB|=$\sqrt{5}$,則此雙曲線的方程為$\frac{4}{9}{y}^{2}-\frac{4}{9}{x}^{2}=1$.

查看答案和解析>>

同步練習(xí)冊答案