7.設(shè)關(guān)于x、y的不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{3x-2<0}\\{y-a>0}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0),滿足x0-2y0=2,則a的取值范圍是(  )
A.(-∞,-$\frac{5}{3}$)B.(-∞,-$\frac{2}{3}$)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{4}{3}$)

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,要使平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)滿足x0-2y0=2,則平面區(qū)域內(nèi)必存在一個(gè)點(diǎn)在直線x-2y=2的下方,由圖象可得a的取值范圍.

解答 解:作出不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{3x-2<0}\\{y-a>0}\end{array}\right.$對(duì)應(yīng)的平面如圖:

直線x-2y=2的斜率為$\frac{1}{2}$斜截式方程為y=$\frac{1}{2}$x-1,
要使平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)滿足x0-2y0=2,
直線y=$\frac{1}{2}$x-1經(jīng)過交點(diǎn)A的坐標(biāo)為($\frac{2}{3}$,$\frac{7}{3}$)的下方,B($\frac{2}{3}$,a)的上方,
即$\frac{1}{2}×$$\frac{2}{3}$-1>a,解得a<-$\frac{2}{3}$.
故a的取值范圍是:(-∞,-$\frac{2}{3}$).
故選:B.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,綜合性較強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}滿足a1=1,3an+1+an-8=0,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(x2-x+1)3展開式中x項(xiàng)的系數(shù)為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在邊長為2的正六邊形ABCDEF中,則$\overrightarrow{AB}•\overrightarrow{AD}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合M={0,1,2},N={x|x2-3x+2>0},則M∩(∁RN)=( 。
A.{1}B.{2}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(1-2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i為虛數(shù)單位,復(fù)數(shù)z=2i+$\frac{2}{1+i}$,則復(fù)數(shù)z的模為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線段PP′,則線段PP′的中點(diǎn)M的軌跡是( 。
A.B.橢圓C.直線D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a>b,a-$\frac{1}{a}$>b-$\frac{1}$同時(shí)成立,則a,b應(yīng)滿足的條件是ab>0或ab<-1..

查看答案和解析>>

同步練習(xí)冊(cè)答案