2.設集合M={0,1,2},N={x|x2-3x+2>0},則M∩(∁RN)=(  )
A.{1}B.{2}C.{0,1}D.{1,2}

分析 求出集合M,根據(jù)集合的基本運算即可得到結(jié)論.

解答 解:M={0,1,2},
N={x|x2-3x+2>0}={x|x>2或x<1},
∴∁RN={x|1≤x≤2},
M∩(∁RN)={1,2},
故選:D.

點評 本題主要考查集合的基本運算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.在三角形ABC中,如果(a+b+c)(b+c-a)=3bc,那么A等于60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.不等式(1-a)x2-4x+b>0的解集是{x|-3<x<1},則b=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸的兩個相鄰交點之間的距離等于$\frac{π}{2}$,若將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個單位長度得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在區(qū)間[0,$\frac{π}{3}$]上的最大值為( 。
A.0B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=$\frac{2x}{ln|x|}$的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設關于x、y的不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{3x-2<0}\\{y-a>0}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點P(x0,y0),滿足x0-2y0=2,則a的取值范圍是( 。
A.(-∞,-$\frac{5}{3}$)B.(-∞,-$\frac{2}{3}$)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四邊形ABCD為矩形,且AB=1,AD=2,PA⊥平面ABCD,E、F為BC、AB的中點.
(1)證明:PE⊥DE;
(2)若在線段PA上存在點G,使得FG∥平面PDE.試確定點G的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.定義M{x,y}=$\left\{\begin{array}{l}{x,(x≥y)}\\{y,(x<y)}\end{array}\right.$,設a=x2+xy+x,b=4y2+xy+2y(x,y∈R),則M{a,b}的最小值為-$\frac{1}{6}$,當M取到最小值時,x=-$\frac{1}{3}$,y=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的解析式為f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$).

查看答案和解析>>

同步練習冊答案