設(shè)集合A={x|a≤x≤a+3},B={x|x<-1或x>5},當(dāng)A∩B=∅時,求a的值.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集定義和空集性質(zhì)求解.
解答: 解:∵集合A={x|a≤x≤a+3},B={x|x<-1或x>5},
∴當(dāng)A∩B=∅時,
a≥-1
a+3≤5

解得-1≤a≤2.
點(diǎn)評:本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A(1,2),B(-1,-1),一條內(nèi)角平分線所在直線方程為2x+y-1=0,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1<x<2},B={x|m<x<m+8}.
(1)若A⊆B,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對所有的實(shí)數(shù)x及1≤t≤
2
均有(x+t2+2)2+(x+at)2
1
8
成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨x2-ax+a-1=0},試問:是否存在a使B是A的真子集,若存在,求出a的所有值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2<x<4},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,試求A∩∁UB;
(2)若A∩B=∅,求實(shí)數(shù)m的取值集合;
(3)若A∩B=A,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x2-2x|(x∈R).
(1)在區(qū)間[-2,3]上畫出函數(shù)f(x)的圖象;
(2)根據(jù)圖象寫出該函數(shù)在[-2,3]上的單調(diào)區(qū)間;
(3)方程f(x)=a有兩個不同的實(shí)數(shù)根,求a的取值范圍.(只寫答案即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)(A≠0).
(1)當(dāng)0≤x≤
π
2
時,求y=f(sinx)的最大值;
(2)問a取何值時,方程f(sinx)=a-sinx在[0,2π)上有兩解?

查看答案和解析>>

同步練習(xí)冊答案