6.已知m,n為空間中兩條不同的直線,α,β為空間中兩個(gè)不同的平面,下列命題中正確的是( 。
A.若m∥α,m∥β,則α∥βB.若m⊥α,m⊥n,則n∥αC.若m∥α,m∥n,則n∥αD.若m⊥α,m∥β,則α⊥β

分析 對(duì)四個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對(duì)于A,若m∥α,m∥β,則α∥β或α,β相交,不正確;
對(duì)于B,若m⊥α,m⊥n,則n∥α或n?α,不正確;
對(duì)于C,若m∥α,m∥n,則n∥α或n?α,不正確;
對(duì)于D,因?yàn)閙∥β,則一定存在直線n在β內(nèi),使得m∥n,又m⊥α可得出n⊥α,由面面垂直的判定定理知,α⊥β,此命題正確,
故選:D.

點(diǎn)評(píng) 本題考查平面與平面之間的位置關(guān)系,空間中兩個(gè)平面的位置關(guān)系主要有相交與平行,相交中比較重要的位置關(guān)系是兩面垂直,解答本題,有著較好的空間立體感知能力,能對(duì)所給的模型找到恰當(dāng)?shù)膶?shí)物背景作出判斷是正確解答本題的關(guān)鍵,本題考查了利用基礎(chǔ)理論作出推理判斷的能力,是立體幾何中的基本.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在數(shù)列{an}中,an=$\frac{1}{1+{2}^{2011-2n}}$,則S=a1+a2+…+a2010的值是1005.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列說(shuō)法正確的是( 。
A.終邊相同的角相等B.相等的角終邊相同
C.小于90°的角是銳角D.第一象限的角是正角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$m≤\frac{2}{3}{x^2}-2x+3≤n({m≠n})$的解集為[m,n],則m+n的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)點(diǎn)A(-3,5)和B(2,15),在直線l:3x-4y+4=0上找一點(diǎn)P,使|PA|+|PB|為最小,則這個(gè)最小值為5$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等比數(shù)列{an}的公比q>1,且2(an+an+2)=5an+1,n∈N*
(Ⅰ)求q的值;
(Ⅱ)若a52=a10,求數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若2014=αk•5kk-1•5k-1+…+a1•51+a0•50,其中ak,ak-1,…,a0∈N,0<ak<5,0≤ak-1,ak-2,…,a1,a0<5.現(xiàn)從a0,a1,…,ak中隨機(jī)取兩個(gè)數(shù)分別作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P落在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1內(nèi)的概率是( 。
A.$\frac{11}{25}$B.$\frac{13}{25}$C.$\frac{17}{25}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=2\sqrt{3}sin(ωx+\frac{π}{4})cos(ωx+\frac{π}{4})+sin2ωx+a$(ω>0)的最大值為1,最小正周期為π.
(Ⅰ)求常數(shù)ω及a的值;
(Ⅱ)求函數(shù)f(x)在$[{-\frac{π}{6},\frac{π}{2}}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)若f(x)為奇函數(shù),求a的值;
(2)證明:不論a為何值f(x)在R上都單調(diào)遞增;
(3)在(1)的條件下,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案