14.A、B兩袋中各裝有大小相同的小球9個(gè),其中A袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4,B袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,甲從A袋中取球,乙從B袋中取球.
(Ⅰ)若甲、乙各取一球,求兩人中所取的球顏色不同的概率;
(Ⅱ)若甲、乙各取兩球,稱(chēng)一人手中所取兩球顏色相同的取法為一次成功取法,記兩人成功取法的次數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

分析 (Ⅰ)設(shè)事件A為“兩人中所取的球顏色不同”,由此利用對(duì)立事件概率計(jì)算公式能求出兩人中所取的球顏色不同的概率.
(Ⅱ)依題意,X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.

解答 (本小題滿(mǎn)分13分)
解:(Ⅰ)設(shè)事件A為“兩人中所取的球顏色不同”,
則P(A)=1-$\frac{2×3+3×3+4×3}{9×9}$=$\frac{2}{3}$.
(Ⅱ)依題意,X的可能取值為0,1,2.
甲所取的兩球顏色相同的概率為$\frac{{C}_{2}^{2}+{C}_{3}^{2}+{C}_{4}^{2}}{{C}_{9}^{2}}$=$\frac{5}{18}$,
乙所取的兩球顏色相同的概率為$\frac{{C}_{3}^{2}+{C}_{3}^{2}+{C}_{3}^{2}}{{C}_{9}^{2}}$=$\frac{1}{4}$,
P(X=0)=(1-$\frac{5}{18}$)(1-$\frac{1}{4}$)=$\frac{13}{24}$,
P(X=1)=$\frac{5}{18}(1-\frac{1}{4})+(1-\frac{5}{18})×\frac{1}{4}$=$\frac{7}{18}$,
P(X=2)=$\frac{5}{18}×\frac{1}{4}$=$\frac{5}{72}$,
所以X的分布列為:

 X 0 1 2
 P $\frac{13}{24}$ $\frac{7}{18}$ $\frac{5}{72}$
EX=$0×\frac{13}{24}+1×\frac{7}{18}+2×\frac{5}{72}$=$\frac{19}{36}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件概率乘法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知方程x2+$\frac{{y}^{2}}{a-1}$=1,求:當(dāng)方程表示橢圓時(shí),a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知在Rt△ABC中,C=90°,則sinAsinB的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性.
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0在x∈(0,+∞)上恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.對(duì)于函數(shù)y=f(x)的定義域?yàn)镈,如果存在區(qū)間[m,n]⊆D,同時(shí)滿(mǎn)足下列條件:
①f(x)在[m,n]上是單調(diào)函數(shù);②當(dāng)f(x)的定義域?yàn)閇m,n]時(shí),值域也是[m,n],則稱(chēng)區(qū)間[m,n]是函數(shù)f(x)的“Z區(qū)間”.對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{alnx-x,x>0}\\{\sqrt{-x}-a,x≤0}\end{array}\right.$(a>0).
(Ⅰ) 若a=1,求函數(shù)f(x)在(e,1-e)處的切線(xiàn)方程;
(Ⅱ) 若函數(shù)f(x)存在“Z區(qū)間”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.極坐標(biāo)與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.曲線(xiàn)C1的極坐標(biāo)方程為ρ-2cosθ=0,曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}{x=t+m}\\{y=2t-1}\end{array}\right.$(t是參數(shù),m是常數(shù))
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C2與C1有兩個(gè)不同的公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E為PD的中點(diǎn).
(Ⅰ)求證:CE∥面PAB
(Ⅱ)求證:平面PAC⊥平面PDC
(Ⅲ)求直線(xiàn)EC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市規(guī)定,高中學(xué)生三年在校期間參加不少于80小時(shí)的社區(qū)服務(wù)才合格.教育部門(mén)在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段,[75,80),[80,85),[85,90),[90,95)[95,100],(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.

(1)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù),并估計(jì)從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率;
(2)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記ξ為3位學(xué)生中參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的人數(shù).試求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ和方差Dξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求與橢圓$\frac{{x}^{2}}{121}+\frac{{y}^{2}}{146}$=1有共同焦點(diǎn),且過(guò)點(diǎn)(0,3)的雙曲線(xiàn)的方程,并求出該雙曲線(xiàn)的實(shí)軸長(zhǎng)、焦距、離心率.

查看答案和解析>>

同步練習(xí)冊(cè)答案