1.函數(shù)y=tan(2x+1)的最小正周期為$\frac{π}{2}$.

分析 直接利用正切函數(shù)求解周期即可.

解答 解:函數(shù)y=tan(2x+1)的最小正周期為:$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點(diǎn)評 本題考查正切函數(shù)的周期的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓心為C的圓經(jīng)過A(0,1)和B(3,4),且圓心C在直線l:x+2y-7=0上.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求過原點(diǎn)且與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求證:$\frac{si{n}^{2}x}{1+cotx}$+$\frac{co{s}^{2}x}{1+tanx}$=1-sinxcosx.[提示:a3+b3=(a+b)(a2-ab+b2)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-6$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線.則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{c}$的關(guān)系為( 。
A.不共線B.共線C.相等D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{5}{4}$cos2x-$\frac{\sqrt{3}}{2}$sinxcosx-$\frac{1}{4}$sin2x.
(Ⅰ)求函數(shù)f(x)取得最大值時x的集合;
(Ⅱ)設(shè)A、B、C為銳角三角形ABC的三個內(nèi)角,若cosB=$\frac{3}{5}$,f(C)=-$\frac{1}{4}$,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+3$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角的正弦值為$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=5sin3x-12cos3x的周期和最大值分別是$\frac{2π}{3}$;13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2015年某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=x+5,每日的銷售額S(單位:萬元)與日產(chǎn)量x的函數(shù)關(guān)系式:S=$\left\{\begin{array}{l}{3x+\frac{k}{x-8}+7,0<x<6}\\{16,x≥6}\end{array}\right.$,已知每日的利潤L=S-C,且當(dāng)x=2時,L=3.
(1)求k的值;
(2)當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若點(diǎn)P(1,1)在圓x2+y2+2x+4y+a=0外,則a的取值范圍是( 。
A.a<-8B.a>-8C.-8<a<5D.a<-8或a>5

查看答案和解析>>

同步練習(xí)冊答案