9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-6$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線.則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{c}$的關(guān)系為( 。
A.不共線B.共線C.相等D.無法確定

分析 由題意可得 $\overrightarrow{c}$=-6$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$=-2($\overrightarrow{a}+\overrightarrow$),可得 $\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{c}$的關(guān)系為共線.

解答 解:由題意可得 $\overrightarrow{a}+\overrightarrow$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-6$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$=-2($\overrightarrow{a}+\overrightarrow$),
∴$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{c}$的關(guān)系為:共線,
故選:B.

點(diǎn)評 本題主要考查兩個向量共線的條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.分別求下列函數(shù)的定義域:
(1)y=$\sqrt{-{x}^{2}+6x-5}$;
(2)y=$\frac{\sqrt{{x}^{2}-3x-4}}{|x-4|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.直線ax-6y-12a=0(a≠0)在x軸上的截距是它在y軸上的截距的3倍,求a值及直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-$\frac{a(x+1)}{x-1}$,曲線y=f(x)在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線平行于直線y=10x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)直線l為函數(shù)y=lnx圖象上任意一點(diǎn)A(x0,y0)處的切線,在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=ex也相切?若存在,滿足條件的x0有幾個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.動圓P與直線l:x=-1相切,且與圓(x-2)2+y=1相外切,設(shè)動圓C的圓心的軌跡為C,過點(diǎn)(8,0)的直線m與C相交于A、B兩點(diǎn).
(1)求軌跡C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=sin2x,記fn+1(x)=f′n(x)(x∈N*
(1)f4k+1(x)=24ksin2x,f4k+2(x)=24k+1cos2x,f4k+3(x)=-24k+24sin2x,f4k+4(x)=-24k+3cos2x.(k∈Z)
(2)則f1($\frac{π}{6}$)+f2($\frac{π}{6}$)+…+f2013($\frac{π}{6}$)+f2014($\frac{π}{6}$)==$\frac{2+\sqrt{3}}{10}$(1+22014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=tan(2x+1)的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.命題“已知點(diǎn)A(3,0),對橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn)P,恒有PA≥m”是真命題,則實(shí)數(shù)m的取值范圍是m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)y=2sin($\frac{x}{2}$+$\frac{π}{4}$).
(1)求函數(shù)取得最小值時自變量x的值;
(2)當(dāng)-$\frac{5}{6}$π≤x≤$\frac{5}{6}$π時.求函數(shù)的值域;
(3)求函數(shù)的單調(diào)遞增區(qū)間;
(4)用“五點(diǎn)法”作出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(5)請逐一寫出由函數(shù)y=sinx的圖象得到y(tǒng)=2sin($\frac{x}{2}$+$\frac{π}{4}$)的圖象的變換過程.

查看答案和解析>>

同步練習(xí)冊答案