【題目】(1)求對稱軸是軸,焦點在直線上的拋物線的標準方程;
(2)過拋物線焦點的直線它交于兩點,求弦的中點的軌跡方程.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)題意知道焦點就是直線和x軸的交點,根據(jù)拋物線的定義得到方程即可;
(2)先考慮直線的斜率不存在時的情況;再考慮直線斜率存在時,聯(lián)立直線和拋物線根據(jù)韋達定理得到中點坐標為,再消參即可。
解析:
(1)對稱軸是軸則頂點在焦點在軸
所以,則, ,
.
(2)由題知拋物線焦點為,
當直線的斜率存在時,設為,則焦點弦方程為,
代入拋物線方程得所以,由題意知斜率不等于0,
方程是一個一元二次方程,由韋達定理:
所以中點坐標:
代入直線方程
中點縱坐標;
即中點為
消參數(shù),得其方程為
當直線的斜率不存在時,直線的中點是,符合題意,
綜上所述,答案為.
科目:高中數(shù)學 來源: 題型:
【題目】為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行抽樣檢查,測得身高情況的統(tǒng)計圖如圖所示:
(1)估計該校男生的人數(shù);
(2)估計該校學生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓: 的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點的圓恰好與直線: 相切,求橢圓的方程;
(III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過定點斜率為的直線與橢圓交于兩點,若,求斜率的值;
(Ⅲ)若(Ⅱ)中的直線與交于兩點,設點在上,試探究使的面積為的點共有幾個?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圓(x-1)2+(y+1)2=R2上有且僅有兩個點到直線4x+3y=11的距離等于1,則半徑R的取值范圍是( )
A. R>1 B. R<3 C. 1<R<3 D. R≠2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2 .
(1)求證:|x1+x2|>2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 () | ||||||
就診人數(shù)(個) |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.
(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;
(2)若選取的是1月與月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù),
(參考公式: ,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓: 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)已知點,設是橢圓上關于軸對稱的不同兩點,直線與相交于點,求證:點在橢圓上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com