12.某四棱錐的三視圖如圖所示,則該四棱錐最長的棱長為$\sqrt{5}$.

分析 四棱錐的底面為正方形,一條側(cè)棱與底面垂直,求出四條側(cè)棱的長比較大小即可.

解答 解:由三視圖可知三棱錐的底面ABCD是正方形,對角線AC=2,側(cè)棱PA⊥平面ABCD,PA=1,
∴四棱錐的底面邊長AB=$\sqrt{2}$,PB=PD=$\sqrt{P{A}^{2}+A{B}^{2}}$=$\sqrt{3}$,PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=$\sqrt{5}$.
∴三棱錐最長棱為$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查了棱錐的結(jié)構(gòu)特征和三視圖,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知焦距為2$\sqrt{6}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過點A(2,1)
(1)求橢圓C的方程;
(2)已知直線l:x-2y-$\sqrt{6}$=0,直線l′平行于直線l,且與橢圓C交于不同的兩點M、N,記直線AM的傾斜角為θ1,直線AN的傾斜角為θ2,試探究θ12是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=alnx+$\frac{1}{4}$x+$\frac{3{a}^{2}}{x}$(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)g(x)=2x2-mex(e=2.718…為自然對數(shù)的底數(shù)),當(dāng)a=-$\frac{1}{6}$e時,對任意x1∈[1,4],存在x2∈(1,3),使g(x1)≥f(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.過拋物線x2=2y的頂點O作兩條相互垂直的弦OP和OQ,求證:直線PQ恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.
(1)求$\overrightarrow{a}$•$\overrightarrow$及|$\overrightarrow{a}$+$\overrightarrow$|;
(2)設(shè)向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.復(fù)數(shù)$\frac{2-i}{1+i}$=$\frac{1}{2}-\frac{3}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A是函數(shù)g(x)=loga[-(x-2a)(x-a)](a>0,且a≠1)的定義域,集合B和集合C分別是函數(shù)$f(x)=\sqrt{9-{3^x}}$的定義域和值域.
(1)求集合A,B,C;
(2)若A∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|-2≤x≤7},B={x|m+1≤x≤2m-1},若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,若其圖象向右平移$\frac{π}{6}$個單位,得到的函數(shù)為偶函數(shù),則函數(shù)f(x)的圖象(  )
A.關(guān)于直線x=$\frac{5π}{12}$對稱B.關(guān)于點($\frac{7π}{12}$,0)對稱
C.關(guān)于點($\frac{5π}{12}$,0)對稱D.關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

同步練習(xí)冊答案