分析 (Ⅰ)由正弦定理化簡(jiǎn)已知等式可得2sinBcosA=$\sqrt{3}$sinB,由sinB>0,從而可求cosA=$\frac{\sqrt{3}}{2}$,結(jié)合A的范圍即可得解.
(Ⅱ)由已知及三角形面積公式可求c,由余弦定理即可解得a的值.
解答 解:(Ⅰ)由正弦定理可得:2sinBcosA=$\sqrt{3}$(sinCcosA+sinAcosC),
得:2sinBcosA=$\sqrt{3}$sin(A+C),
即:2sinBcosA=$\sqrt{3}$sinB,
因?yàn)?<B<π,所以sinB>0,
從而cosA=$\frac{\sqrt{3}}{2}$,
又0<A<π,
所以A=$\frac{π}{6}$…6分
(Ⅱ)由b=4,S=6=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×c×\frac{1}{2}$,解得:c=6.
由余弦定理可得:a2=b2+c2-2bccosA=42+62-2×$4×6×\frac{\sqrt{3}}{2}$=52-24$\sqrt{3}$,
可解得:a=2$\sqrt{13-6\sqrt{3}}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 92 | B. | $16\sqrt{2}+80$ | C. | 80 | D. | $16\sqrt{2}+92$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com