分析 (1)先求得a1,a2得出d,即可寫出an.
(2)利用(1)可得,利用裂項相消法即可求得數(shù)列的和.
解答 解:(1)∵數(shù)列{an}是等差數(shù)列,且a1=3,a1+a2+a3=15.a(chǎn)2=5,
∴d=2,
∴an=3+2(n-1)=2n+1.
(2)$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,
∴數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和Tn=$\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+$$\frac{1}{2n+1}$-$\frac{1}{2n+3}$=$\frac{1}{3}-\frac{1}{2n+3}$.
點評 本題主要考查等差數(shù)列的定義及性質(zhì)和數(shù)列求和的方法裂項相消法,考查學(xué)生的運(yùn)算求解能力,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -1或1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-2y-6=0 | B. | 2x-3y+6=0 | C. | 3x+2y-6=0 | D. | 2x+3y+6=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$=(-2,3),$\overrightarrow{{e}_{2}}$=(4,-6) | B. | $\overrightarrow{{e}_{1}}$=(1,5),$\overrightarrow{{e}_{2}}$=(-2,1) | ||
C. | $\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(-1,-$\frac{3}{2}$) | D. | $\overrightarrow{{e}_{1}}$=(3,4),$\overrightarrow{{e}_{2}}$=(-6,-8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com