3.函數(shù)f(x)=lg$\frac{1-x}{1+x}$在區(qū)間(-1,1)上是( 。
A.奇函數(shù)、增函數(shù)B.偶函數(shù)、增函數(shù)C.奇函數(shù)、減函數(shù)D.偶函數(shù)、減函數(shù)

分析 分析函數(shù)f(x)=lg$\frac{1-x}{1+x}$在區(qū)間(-1,1)上的單調(diào)性和奇偶性,進(jìn)而可得答案.

解答 解:∵f(x)=lg$\frac{1-x}{1+x}$,
∴f(-x)=lg$\frac{1+x}{1-x}$=lg($\frac{1-x}{1+x}$)-1=-lg$\frac{1-x}{1+x}$=-f(x),
故函數(shù)f(x)=lg$\frac{1-x}{1+x}$在區(qū)間(-1,1)上是奇函數(shù);
又由y=$\frac{2}{1+x}$在區(qū)間(-1,1)上是減函數(shù),
故f(x)=lg$\frac{1-x}{1+x}$=lg($\frac{2}{1+x}$-1)為減函數(shù),
故選;C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的奇偶性與函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若指數(shù)函數(shù)f(x)=ax在[1,2]上的最大值與最小值的差為$\frac{a}{2}$,則a=( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{2}$或$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是C上的點(diǎn),PF1⊥F1F2,∠PF2F1=45°,則C的離心率為(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}-1$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1內(nèi)有一點(diǎn)P(3,1),F(xiàn)為雙曲線的右焦點(diǎn),在雙曲線上有一點(diǎn)M,使|MP|+$\frac{2}{3}$|MF|的值最小,則這個(gè)最小值為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b∈N*),兩焦點(diǎn)是F1、F2,點(diǎn)P在雙曲線上,又|PF1|、|F1F2|、|PF2|成等比數(shù)列,且|PF2|<4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=loga(1-x)+loga(x+3),其中0<a<1,記函數(shù)f(x)的定義域?yàn)镈.
(1)求函數(shù)f(x)的定義域D;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列直線中,傾斜角最大的是( 。
A.x+2y=1=0B.2x-y-1=0C.y=xD.y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.甲、乙兩名同學(xué)在5次英語(yǔ)口語(yǔ)測(cè)試中的成績(jī)統(tǒng)計(jì)如圖的莖葉圖所示.
(1)分別在甲乙的5次成績(jī)中任取一次,至少有一個(gè)成績(jī)高于80的概率;
(2)若將頻率視為概率,對(duì)學(xué)生甲和乙在今后的兩次英語(yǔ)口語(yǔ)競(jìng)賽成績(jī)進(jìn)行預(yù)測(cè),記兩人成績(jī)都高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)log83=a,log35=b.試用a、b表示lg5.

查看答案和解析>>

同步練習(xí)冊(cè)答案