16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2x+2,x≤0\\|{x-1}|+1,x>0\end{array}$,若f(x)≥ax恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.[2-2$\sqrt{2}$,1]B.(-∞,1]C.(2-2$\sqrt{2}$,0)D.[2-2$\sqrt{2}$,0]

分析 繪出函數(shù)f(x)的圖象,利用數(shù)形結(jié)合的思想判斷a的范圍,找出臨界點(diǎn)即相切時(shí)a的取值,進(jìn)而得出a的范圍.

解答 解:作出f(x)的圖象,如右.
由圖象可知:
要使f(x)≥ax恒成立,
只需函數(shù)g(x)=ax的圖象恒在圖象f(x)的下方,
可得a≤1顯然成立,
設(shè)g(x)=ax與函數(shù)f(x)=x2+2x+2(x≤0)相切于點(diǎn)P(m,n),
由f(x)的導(dǎo)數(shù)為2x+2,可得切線的斜率為2m+2,
即有a=2m+2,am=m2+2m+2,
解得m=-$\sqrt{2}$,a=2-2$\sqrt{2}$
由圖象可得a≥2-2$\sqrt{2}$,
綜上可得a的范圍是[2-2$\sqrt{2}$,1].
故選:A.

點(diǎn)評(píng) 本題考查不等式成立問題的解法,注意運(yùn)用數(shù)形結(jié)合的思想方法,考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{3}$.則|$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知sinα=$\frac{\sqrt{5}}{5}$,cosα=$\frac{2\sqrt{5}}{5}$,則tan$\frac{α}{2}$=( 。
A.2-$\sqrt{5}$B.2+$\sqrt{5}$C.$\sqrt{5}$-2D.±($\sqrt{5}$-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x-(1+a)lnx在x=1時(shí)存在極值.
(Ⅰ)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)證明:當(dāng)x>1時(shí),$\frac{f(x)-1}{x-1}$<$\frac{1}{2}$lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知存在實(shí)數(shù)a,使得關(guān)于x的不等式$\sqrt{x}-\sqrt{4-x}≥a$恒成立,則a的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x≠0)的導(dǎo)函數(shù)f′(x)<$\frac{2f(x)}{x}$,函數(shù)y=f(x)(x≠0)的零點(diǎn)為1和-2,則不等式xf(x)<0的解集為( 。
A.(-∞,-2)∪(0,1)B.(-∞,-2)∪(1,+∞)C.(-2,0)∪(0,1)D.(-2,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ax2+bx,a,b∈R.若-3x2-1≤f(x)≤6x+2對(duì)任意的x∈R恒成立.?dāng)?shù)列{an}滿足${a_1}=\frac{1}{3}$,an+1=f(an)(n∈N*).
(Ⅰ)確定f(x)的解析式;
(Ⅱ)證明:$\frac{1}{3}≤{a_n}<\frac{1}{2}$;
(Ⅲ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求證:$4{S_n}≥2n-1+\frac{1}{3^n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若數(shù)列{an}的通項(xiàng)為an=$\frac{1}{(2n-1)(2n+3)}$,求其n前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)y=$\frac{\sqrt{1-{x}^{2}}}{2+x}$的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案