2.求下列各式的值:
(1)若$\frac{π}{2}$<α<π,且sinα=$\frac{4}{5}$,求$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值,
(2)lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$.

分析 (1)由同角三角函數(shù)關(guān)系式先求出cosα,再求出tanα,然后利用誘導(dǎo)公式能求出$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值.
(2)由lg200=2+lg2,$\frac{1}{2}lg25=lg5$,5(lg2+lg5)3=5,${(\frac{1}{27})^{-\frac{1}{3}}}={(27)^{\frac{1}{3}}}=3$,能求出lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$的值.

解答 解:(1)∵$\frac{π}{2}<α<π$,sinα=$\frac{4}{5}$,
∴cosα=-$\sqrt{1-(\frac{4}{5})^{2}}$=$-\frac{3}{5}$,
∴$tanα=\frac{\frac{4}{5}}{-\frac{3}{5}}$=-$\frac{4}{3}$,
∴$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$
=$\frac{-sinαtanα(-cosα)}{cosα(-sinα)}$=$-tanα=\frac{4}{3}$.
(2)∵lg200=2+lg2,$\frac{1}{2}lg25=lg5$,5(lg2+lg5)3=5,${(\frac{1}{27})^{-\frac{1}{3}}}={(27)^{\frac{1}{3}}}=3$
∴l(xiāng)g200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$
=2+lg2+lg5+5-3=5.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡求值,考查對(duì)數(shù)式、指數(shù)式化簡求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意同角三角函數(shù)關(guān)系式、誘導(dǎo)公式、對(duì)數(shù)及指數(shù)運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax+$\frac{x}$(a,b為常數(shù)),且f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b的值;
(2)求函數(shù)f(x)在[$\frac{1}{4}$,2]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)在(-∞,2]上為減函數(shù),且f(x+2)是R上的偶函數(shù),若f(a)≥f(3),則實(shí)數(shù)a的取值范圍是a≤1或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ∈[0,2π],θ為參數(shù)),將圓上所有點(diǎn)的橫坐標(biāo)伸長到原來的$\sqrt{3}$倍,縱坐標(biāo)不變得到曲線C1;以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=4\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn) P與曲線C2上點(diǎn)的距離的最小值,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校為了調(diào)查“學(xué)業(yè)水平考試”學(xué)生的數(shù)學(xué)成績,隨機(jī)地抽取該校甲、乙兩班各10名同學(xué),獲得的數(shù)據(jù)如下:(單位:分)
132108112121113121118127118129
133107120113122114125118129127
(1)以百位和十位為莖,個(gè)位為葉,在圖中作出甲、乙兩班學(xué)生數(shù)學(xué)成績的莖葉圖,并判列哪個(gè)班的平均水平較高;
(2)若數(shù)學(xué)成績不低于128分,稱為“優(yōu)秀”,求從甲班這10名學(xué)生中隨機(jī)選取3名,至多有1名“優(yōu)秀”的概率.
(3)以這20人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體成績,若從該校(人數(shù)很多)任選3人,記X表示抽到“優(yōu)秀”學(xué)生的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的奇函數(shù)f(x)滿足:對(duì)任意的x1,x2∈[0,+∞)( x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,則(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給定平面上四點(diǎn)O,A,B,C滿足OA=4,OB=2,OC=2,$\overrightarrow{OB}$•$\overrightarrow{OC}$=2,則△ABC面積的最大值為$\sqrt{3}+4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1)
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值.
(2)若<$\overrightarrow{a}$,$\overrightarrow$>為銳角,求x的范圍;
(3)當(dāng)($\overrightarrow{a}$+2$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$)時(shí),求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算下列各式的值
(1)log3$\sqrt{27}$+lg25+lg4$+{({0.125})^{\frac{1}{3}}}$
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求值:$\frac{{a+{a^{-1}}}}{{{a^2}+{a^{-2}}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案