10.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l2,l3在l1的同側(cè).l1與l2的距離是d,l2與l3的距離是2d,邊長為1的正三角形ABC的三個頂點分別在l1,l2,l3上,則d=$\frac{{\sqrt{21}}}{14}$.

分析 過A,C作AE,CF垂直于L2,點E,F(xiàn)是垂足,將Rt△BCF繞點B逆時針旋轉(zhuǎn)60°至Rt△BAD處,延長DA交L2于點G,由此可得結(jié)論.

解答 解:如圖,過A,C作AE,CF垂直于L2,點E,F(xiàn)是垂足,
將Rt△BCF繞點B逆時針旋轉(zhuǎn)60°至Rt△BAD處,延長DA交L2于點G.
由作圖可知:∠DBG=60°,AD=CF=2d.
在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=d,AG=2d,DG=4d.
∴BD=$\frac{4\sqrt{3}}{3}$d
在Rt△ABD中,AB=$\frac{2\sqrt{21}}{3}$d=1,
∴d=$\frac{{\sqrt{21}}}{14}$.
故答案為:$\frac{{\sqrt{21}}}{14}$.

點評 本題考查平行線的性質(zhì),等腰三角形,直角三角形的性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.當(dāng)x∈[-4,-1]∪[1,4]時,不等式ax2-x+4+$\frac{3}{x}$≤0恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,-2]B.(-∞,-2)C.(-∞,-6]D.(-∞,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+\frac{1}{2}x,x<0\\{e^x}-1,x≥0\end{array}$,若函數(shù)y=f(x)-kx有3個零點,則實數(shù)k的取值范圍是( 。
A.(-1,1)B.(1,+∞)C.[2,+∞)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系中,已知曲線C:$\left\{\begin{array}{l}{x=2cosθ+sinθ}\\{y=cosθ-2sinθ}\end{array}\right.$(θ為參數(shù))與曲線L:$\left\{\begin{array}{l}{x=\sqrt{10}-t}\\{y=t}\end{array}\right.$(t為參數(shù))交于點Q.
(1)以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,求Q點的極坐標(biāo);
(2)求曲線C關(guān)于直線L對稱的曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線C上的點按坐標(biāo)變換$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=\frac{1}{3}y}\end{array}\right.$,得到曲線C′.
(1)求曲線C′的普通方程;
(2)若點A在曲線C′上,點D(0,2),當(dāng)點A在曲線C′上運動時,求AD中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知極坐標(biāo)方程ρcosθ+ρsinθ-1=0的直線與x軸的交點為P,與橢圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))交于點A,B兩點.
(1)求點P的直角坐標(biāo);
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.極坐標(biāo)方程ρcosθ=sin2θ(θ≥0)表示的曲線是( 。
A.一個圓B.兩條射線或一個圓
C.兩條直線D.一條射線或一個圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知方程:|x-2|+|x+1|=a(a∈R)有解.
(1)求實數(shù)a的取值范圍;
(2)求g(a)=a+$\frac{32}{a^2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=x2+bx+c的兩個零點關(guān)于x=1對稱,則( 。
A.f(-1)<f(0)<f(4)B.f(-1)<f(4)<f(0)C.f(0)<f(-1)<f(4)D.f(0)<f(4)<f(-1)

查看答案和解析>>

同步練習(xí)冊答案