【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn),給出命題:①;②若,則存在,使得;③若有兩個極值點(diǎn),,則;④若,且是曲線,的一條切線,則的取值范圍是;則以上命題正確序號是______.

【答案】①②④

【解析】

由函數(shù)有極值,求得的范圍,同時有導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn)求得的關(guān)系,判斷四個命題的真假,其中①由剛才的關(guān)系式就可判斷,②用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理可得,③可舉反例說明,④用已知得出單調(diào)性,化簡函數(shù),利用導(dǎo)數(shù)的幾何意義求出的表達(dá)式,從而求得其取值范圍.

由題意,,即

設(shè),則,由,由是一次函數(shù)知的極值點(diǎn)(本題是極小值點(diǎn)),即為的極值點(diǎn),

所以,即

,①正確;

②顯然時,,

設(shè)的兩解為,即為的兩個極值點(diǎn),則中有一個小于1,一個大于1,不妨設(shè),是極大值,而,若,則,上在一個零點(diǎn),當(dāng)時,上單調(diào)遞增,,因此上有零點(diǎn)

所以.②正確;

③若,則極值為0和2,,③錯誤;

④由,知②中,因此上遞增,

,,設(shè)切點(diǎn)為,

,即,整理得,

,因?yàn)?/span>,所以,又,解得,

,

由上知是增函數(shù),所以當(dāng)時,.④正確.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,平面底面,,分別是的中點(diǎn),,.

1)求證:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站20181月~8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

月份

1

2

3

4

5

6

7

8

促銷費(fèi)用

2

3

6

10

13

21

15

18

產(chǎn)品銷量

1

1

2

3

3.5

5

4

4.5

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系,請建立的回歸方程(系數(shù)精確到0.01);

2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量,,則每位員工每日獎勵100元;,則每位員工每日獎勵150元,,則每位員工每日獎勵200.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計(jì)算某位員工當(dāng)月獎勵金額總數(shù)大約多少元(當(dāng)月獎勵金額總數(shù)精確到百分位).

參考數(shù)據(jù):,,其中,分別為第個月的促銷費(fèi)用和產(chǎn)品銷量,.

參考公式:①對于一組數(shù)據(jù),,,,其回歸方程的斜率和截距的最小二乘估計(jì)分別為,;②若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線的焦點(diǎn),過點(diǎn)且與坐標(biāo)軸不垂直的直線交拋物線于、兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),其中,.過點(diǎn)軸的垂線交拋物線于點(diǎn),直線交拋物線于點(diǎn).

1)求的值;

2)求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于AB兩點(diǎn),以線段AP為直徑的圓與直線的另一個交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面,,上異于的點(diǎn).

1)求證:平面平面;

2)當(dāng)與平面所成角為時,求的長;

3)當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,試討論函數(shù)的單調(diào)性,并求出函數(shù)的極值;

2)若恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案