分析 (Ⅰ)設P(x,y),則|x+1|=$\sqrt{(x-2)^{2}+{y}^{2}-3}$,由此能求出曲線E的方程.
(Ⅱ)設直線AB的方程為my=x-2,則直線CQ的方程為y=-m(x-2),將my=x-2代入y2=6x,得:y2-6my-12=0,由此利用韋達定理、兩點間距離公式能求出$\frac{|QD|}{|AB|}$的取值范圍.
解答 解:(Ⅰ)由已知得圓心為C(2,0),半徑r=$\sqrt{3}$,
設P(x,y,),∵動點P到直線l:x=-1的距離等于
它到圓C:x2+y2-4x+1=0的切線長(P到切點的距離),
∴|x+1|=$\sqrt{(x-2)^{2}+{y}^{2}-3}$,整理,得y2=6x,
∴曲線E的方程為y2=6x.
(Ⅱ)設直線AB的方程為my=x-2,
則直線CQ的方程為y=-m(x-2),
∴Q(-1,3m),
將my=x-2代入y2=6x,整理,得:y2-6my-12=0,
設A(x1,y1),B(x2,y2),
則y1+y2=6m,y1y2=-12,
∴D(3m2+2,3m),|QD|=3m2+3,
|AB|=2$\sqrt{3}$•$\sqrt{(1+{m}^{2})(3{m}^{2}+4)}$,
∴($\frac{|QD|}{|AB|}$)2=$\frac{3{m}^{2}+3}{4(3{m}^{2}+4)}$=$\frac{1}{4}$(1-$\frac{1}{3{m}^{2}+4}$)∈[$\frac{3}{16}$,$\frac{1}{4}$),
∴$\frac{|QD|}{|AB|}$的取值范圍是[$\frac{\sqrt{3}}{4},\frac{1}{2}$).
點評 本題考查曲線方程的求法,考查兩線段比值的求法,是中檔題,解題時要認真審題,注意韋達定理、兩點間距離公式的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3] | B. | [3,+∞) | C. | [-3,3] | D. | (-∞,-3]∪[3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com