2x2-3x-2≥0的解集是
 
考點:一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)一元二次不等式的基本解法步驟解答即可.
解答: 解:不等式2x2-3x-2≥0可化為
(2x+1)(x-2)≥0,
∴x≥2,或x≤-
1
2
;
∴原不等式的解集為{x|x≥2或x≤-
1
2
}.
故答案為:{x|x≥2或x≤-
1
2
}.
點評:本題考查了一元二次不等式的解法以及應(yīng)用問題,解答時應(yīng)根據(jù)一元二次不等式的基本解法步驟進行解答,即可得出正確的答案,是容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(1+x)α的定義域是[-1,+∞),其中常數(shù)α>0.
(1)若α>1,求y=f(x)的過原點的切線方程.
(2)當α>2時,求最大實數(shù)A,使不等式f(x)>1+αx+Ax2對x>0恒成立.
(3)證明當α>1時,對任何n∈N*,有1<
1
n
n+1
k=2
((
k-1
k
α+
α
k
)<α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C2:x2=2py(p>0)的通徑長為4,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且過拋物線C2的焦點.
(1)求拋物線C2和橢圓C1的方程;
(2)過定點M(-1,
3
2
)引直線l交拋物線C2于A,B兩點(點A在點B的左側(cè)),分別過A、B作拋物線C2的切線l1,l2,且l1與橢圓C1相交于P,Q兩點.記此時兩切線l1,l2的交點為點C.
①求點C的軌跡方程;
②設(shè)點D(0,
1
4
),求△DPQ的面積的最大值,并求出此時點C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù),并且滿足f(x+2﹚=-
1
f(x)

(1)當2≤x≤3時,f(x)=x,試求f(105.5)的值;
(2)當x∈[0,2]時,f(x)=2x-1 試求當x∈﹙6,10﹚時,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=-
1
2
x2+x+3在區(qū)間[t,t+2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱底面積為5πcm2,母線長12cm,則圓柱體的全面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=asinx+cosx的圖象關(guān)于點(-
π
3
,0)成中心對稱,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列從集合A到集合B的對應(yīng)中是映射的有
 
;其中一一映射的有
 

①A=N*,B={0,1,2,3,4},f:除以5的余數(shù);
②A={x|x≥0},B={y|y≥0},f:x→y=
x
;
③A=N*,B={-1,1,2,-2},f:x→(-1)x
④A=Z,B=R,f:x→
2
x

⑤A=N*,B=R,f:x→
x2

⑥A={平面α內(nèi)的圓},B={平面α內(nèi)的矩形},f:A中圓的內(nèi)接矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x-2
3-x
≥0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案